PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
2.  RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA 
The Journal of Experimental Medicine  2013;210(11):2447-2463.
Receptor for advanced glycation end-products (RAGE) detects nucleic acids and promotes DNA uptake into endosomes, which in turn lowers the immune recognition threshold for TLR9 activation.
Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo.
doi:10.1084/jem.20120201
PMCID: PMC3804942  PMID: 24081950
3.  Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes 
Immunity  2012;37(6):986-997.
SUMMARY
Toll-like receptor-9 (TLR9) is largely responsible for discriminating self from pathogenic DNA. However, association of host DNA with autoantibodies activates TLR9, inducing the pathogenic secretion of type I interferons (IFNs) from plasmacytoid dendritic cells (pDCs). Here, we found that in response to DNA-containing immune complexes (DNA-IC), but not to soluble ligands, IFN-α production depended upon the convergence of the phagocytic and autophagic pathways, a process called microtubule-associated protein 1A/1B-light chain 3 (LC3)-associated phagocytosis (LAP). LAP was required for TLR9 trafficking into a specialized interferon signaling compartment by a mechanism that involved autophagy-related proteins, but not the conventional autophagic preinitiation complex, or adaptor protein-3 (AP-3). Our findings unveil a new role for nonconventional autophagy in inflammation and provide one mechanism by which anti-DNA autoantibodies, such as those found in several autoimmune disorders, bypass the controls that normally restrict the apportionment of pathogenic DNA and TLR9 to the interferon signaling compartment.
doi:10.1016/j.immuni.2012.09.014
PMCID: PMC3786711  PMID: 23219390
4.  RAGE-Independent Autoreactive B Cell Activation In Response To Chromatin And HMGB1/DNA Immune Complexes 
Autoimmunity  2010;43(1):103-110.
Increasing evidence suggests that the excessive accumulation of apoptotic or necrotic cellular debris may contribute to the pathology of systemic autoimmune disease. HMGB1 is a nuclear DNA-associated protein, which can be released from dying cells thereby triggering inflammatory processes. We have previously shown that IgG2a-reactive BCR transgenic AM14 B cells proliferate in response to endogenous chromatin immune complexes (ICs), in the form of the anti-nucleosome antibody PL2-3 and cell debris, in a TLR9-dependent manner, and that these ICs contain HMGB1. Activation of AM14 B cells by these chromatin ICs was inhibited by a soluble form of the HMGB1 receptor, RAGE-Fc, suggesting HMGB1/RAGE interaction was important for this response [1]. To further explore the role of HMGB1 in autoreactive B cell activation, we assessed the capacity of purified calf thymus HMGB1 to bind dsDNA fragments and found that HMGB1 bound both CG-rich and CG-poor DNA. However, HMGB1/DNA complexes could not activate AM14 B cells unless HMGB1 was bound by IgG2a and thereby able to engage the BCR. To ascertain the role of RAGE in autoreactive B cell responses to chromatin ICs, we intercrossed AM14 and RAGE-deficient mice. We found that spontaneous and defined DNA ICs activated RAGE+ and RAGE− AM14 B cells to a comparable extent. These results suggest that HMGB1 promotes B cell responses to endogenous TLR9 ligands through a RAGE-independent mechanism.
doi:10.3109/08916930903384591
PMCID: PMC2929824  PMID: 20014975
HMGB1; RAGE; AM14 B cells; TLR9; Systemic Lupus Erythematosus; autoreactive B cell activation
5.  Cell-type specific recognition of human Metapneumoviruses by RIG-I and TLR7 and viral interference of RIG-I ligand recognition by HMPVB1 Phosphoprotein 
Human Metapneumoviruses (HMPV) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germline encoded pattern recognition receptors and activation of cytokine and type I interferon genes. Recently, the RNA helicase Retinoic acid inducible gene (RIG-I) has been shown to sense HMPV. In this study, we investigated the ability of two prototype strains of HMPV (A1 [NL\1\00] and B1 [NL\1\99]) to activate RIG-I and induce type I interferons (IFN). Despite the ability of both HMPV-A1 and B1 to infect and replicate in cell lines and primary cells, only the HMPV-A1 strain triggered RIG-I to induce IFNA/B gene transcription. The failure of the HMPV-B1 strain to elicit type I IFN production was dependent on the B1 phosphoprotein, which specifically prevented RIG-I-mediated sensing of HMPV viral 5’ triphosphate RNA. In contrast to most cell types, plasmacytoid dendritic cells (PDC) displayed a unique ability to sense both the A1 and B1 strains and in this case sensing was via Toll-like receptor (TLR)-7 rather than RIG-I. Collectively, these data reveal differential mechanisms of sensing for two closely related viruses, which operate in cell-type specific manners.
doi:10.4049/jimmunol.0902750
PMCID: PMC2834787  PMID: 20042593
Viral; Signal Transduction; Knockout mouse
6.  Cc Chemokine Receptor (Ccr)3/Eotaxin Is Followed by Ccr4/Monocyte-Derived Chemokine in Mediating Pulmonary T Helper Lymphocyte Type 2 Recruitment after Serial Antigen Challenge in Vivo 
Isolated peripheral blood CD4 cells from allergic individuals express CC chemokine receptor (CCR)3 and CCR4 after expansion in vitro. In addition, human T helper type 2 (Th2) cells polarized in vitro selectively express CCR3 and CCR4 at certain stages of activation/differentiation and respond preferentially to the ligands eotaxin and monocyte-derived chemokine (MDC). However, controversy arises when the in vivo significance of this distinct expression is discussed. To address the functional role of CCR3/eotaxin and CCR4/MDC during the in vivo recruitment of Th2 cells, we have transferred effector Th cells into naive mice to induce allergic airway disease. Tracking of these cells after repeated antigen challenge has established that both CCR3/eotaxin and CCR4/MDC axes contribute to the recruitment of Th2 cells to the lung, demonstrating the in vivo relevance of the expression of these receptors on Th2 cells. We have shown that involvement of the CCR3/eotaxin pathway is confined to early stages of the response in vivo, whereas repeated antigen stimulation results in the predominant use of the CCR4/MDC pathway. We propose that effector Th2 cells respond to both CCR3/eotaxin and CCR4/MDC pathways initially, but that a progressive increase in CCR4-positive cells results in the predominance of the CCR4/MDC axis in the long-term recruitment of Th2 cells in vivo.
PMCID: PMC2195756  PMID: 10637271
chemokines; effector T helper type 2 cells; migration; allergic airway disease; chemokine receptors
7.  Crucial Role of the Interleukin 1 Receptor Family Member T1/St2 in T Helper Cell Type 2–Mediated Lung Mucosal Immune Responses 
T1/ST2 is an orphan receptor of unknown function that is expressed on the surface of murine T helper cell type 2 (Th2), but not Th1 effector cells. In vitro blockade of T1/ST2 signaling with an immunoglobulin (Ig) fusion protein suppresses both differentiation to and activation of Th2, but not Th1 effector populations. In a nascent Th2-dominated response, anti-T1/ST2 monoclonal antibody (mAb) inhibited eosinophil infiltration, interleukin 5 secretion, and IgE production. To determine if these effects were mediated by a direct effect on Th2 cells, we next used a murine adoptive transfer model of Th1- and Th2-mediated lung mucosal immune responses. Administration of either T1/ST2 mAb or T1/ST2-Ig abrogated Th2 cytokine production in vivo and the induction of an eosinophilic inflammatory response, but failed to modify Th1-mediated inflammation. Taken together, our data demonstrate an important role of T1/ST2 in Th2-mediated inflammatory responses and suggest that T1/ST2 may prove to be a novel target for the selective suppression of Th2 immune responses.
PMCID: PMC2195643  PMID: 10510079
inflammation; eosinophil; asthma; cytokines; immunoglobulin superfamily

Results 1-7 (7)