PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
1.  Genomic-Based High Throughput Screening Identifies Small Molecules That Differentially Inhibit the Antiviral and Immunomodulatory Effects of IFN-α 
Molecular Medicine  2008;14(7-8):374-382.
Multiple lines of evidence suggest that inhibition of Type I Interferons, including IFN-α, may provide a therapeutic benefit for autoimmune diseases. Using a chemical genomics approach integrated with cellular and in vivo assays, we screened a small compound library to identify modulators of IFN-α biological effects. A genomic fingerprint was developed from both ex vivo patient genomic information and in vitro gene modulation from IFN-α cell-based stimulation. A high throughput genomic-based screen then was applied to prioritize 268 small molecule inhibitors targeting 41 different intracellular signaling pathways. Active compounds were profiled further for their ability to inhibit the activation and differentiation of human monocytes using disease-related stimuli. Inhibitors targeting NF-κB or Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling emerged as “dissociated inhibitors” because they did not modulate IFN-α anti-viral effects against HSV-1 but potently inhibited other immune-related functions. This work describes a novel strategy to identify small molecule inhibitors for the treatment of autoimmune disorders.
doi:10.2119/2008-00028.Chen
PMCID: PMC2376640  PMID: 18475307
2.  Differential expression and function of breast regression protein 39 (BRP-39) in murine models of subacute cigarette smoke exposure and allergic airway inflammation 
Respiratory Research  2011;12(1):39.
Background
While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.
Methods
CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.
Results
Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.
Conclusions
These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.
doi:10.1186/1465-9921-12-39
PMCID: PMC3079621  PMID: 21473774
3.  Gene-environment interactions in chronic obstructive pulmonary disease 
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death throughout the world and is largely associated with cigarette smoking. Despite the appreciation of the central role of smoking in the development of COPD, only a relatively small number of smokers (15%–20%) develop COPD. Recent studies depicting familial aggregation suggest that some subjects may have a genetic predisposition to developing COPD. In this respect, a number of single nucleotide polymorphisms have been reported in association with different COPD features (subphenotypes), although much of this data remains controversial. Classical genetic studies (including twin and family studies) assume an “equal-environment” scenario, but as gene-environment interactions occur in COPD, this assumption needs revision. Thus, new integrated models are needed to examine the major environmental factors associated with COPD which include smoking as well as air pollution, and respiratory infections, and not only genetic predisposition. Revisiting this area, may help answer the question of what has more bearing in the pathogenesis of COPD—the environment or the genomic sequence of the affected subjects. It is anticipated that an improved understanding of this interaction will both enable improved identification of individuals susceptible to developing this disease, as well as improved future treatments for this disease.
PMCID: PMC2629985  PMID: 18990979
chronic obstructive pulmonary disease; environment; genomics; pathogenesis
4.  IL-4 increases type 2, but not type 1, cytokine production in CD8+ T cells from mild atopic asthmatics 
Respiratory Research  2005;6(1):67.
Background
Virus infections are the major cause of asthma exacerbations. CD8+ T cells have an important role in antiviral immune responses and animal studies suggest a role for CD8+ T cells in the pathogenesis of virus-induced asthma exacerbations. We have previously shown that the presence of IL-4 during stimulation increases the frequency of IL-5-positive cells and CD30 surface staining in CD8+ T cells from healthy, normal subjects. In this study, we investigated whether excess IL-4 during repeated TCR/CD3 stimulation of CD8+ T cells from atopic asthmatic subjects alters the balance of type 1/type 2 cytokine production in favour of the latter.
Methods
Peripheral blood CD8+ T cells from mild atopic asthmatic subjects were stimulated in vitro with anti-CD3 and IL-2 ± excess IL-4 and the expression of activation and adhesion molecules and type 1 and type 2 cytokine production were assessed.
Results
Surface expression of very late antigen-4 [VLA-4] and LFA-1 was decreased and the production of the type 2 cytokines IL-5 and IL-13 was augmented by the presence of IL-4 during stimulation of CD8+ T cells from mild atopic asthmatics.
Conclusion
These data suggest that during a respiratory virus infection activated CD8+ T cells from asthmatic subjects may produce excess type 2 cytokines and may contribute to asthma exacerbation by augmenting allergic inflammation.
doi:10.1186/1465-9921-6-67
PMCID: PMC1198257  PMID: 16001979

Results 1-4 (4)