PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  In vitro and in vivo pharmacological profile of PL-3994, a novel cyclic peptide (Hept-cyclo(Cys-His-Phe-d-Ala-Gly-Arg-d-Nle-Asp-Arg-Ile-Ser-Cys)-Tyr-[Arg mimetic]-NH2) natriuretic peptide receptor-A agonist that is resistant to neutral endopeptidase and acts as a bronchodilator 
The pharmacological and airways relaxant profiles of PL-3994 (Hept-cyclo(Cys-His-Phe-d-Ala-Gly-Arg-dNle-Asp-Arg-Ile-Ser-Cys)-Tyr-[Arg mimetic]-NH2), a novel natriuretic peptide receptor-A (NPR-A) agonist, were evaluated. PL-3994, a full agonist, has high affinity for recombinant human (h), dog, or rat NPR-As (Kis of 1, 41, and 10 nm, respectively), and produced concentration-dependent cGMP generation in human, dog and rat NPR-As (respective EC50s of 2, 3 and 14 nm). PL-3994 has a Ki of 7 nm for hNPR-C but was without effect on cGMP generation in hNPR-B. PL-3994 (1 µm) was without significant effect against 75 diverse molecular targets. PL-3994 or BNP, a natural NPR ligand, produced concentration-dependent relaxation of pre-contracted guinea-pig trachea (IC50s of 42.7 and 10.7 nm, respectively). PL-3994, and also BNP, (0.1 nm–100 µm) elicited a potent, concentration-dependent but small relaxation of pre-contracted human precision-cut lung slices (hPCLS). Intratracheal PL-3994 (1–1000 µg/kg) produced a dose-dependent inhibition of the bronchoconstrictor response evoked by aerosolized methacholine, but was without significant effect on cardiovascular parameters. PL-3994 was resistant to degradation by human neutral endopeptidase (hNEP) (92% remaining after 2 h), whereas the natural ligands, ANP and CNP, were rapidly metabolized (≤1% remaining after 2 h). PL-3994 is a potent, selective NPR agonist, resistant to NEP, with relaxant effects in guinea-pig and human airway smooth muscle systems. PL-3994 has the profile predictive of longer clinical bronchodilator activity than observed previously with ANP, and suggests its potential utility in the treatment of asthma, in addition to being a useful research tool to evaluate NPR biology.
doi:10.1016/j.pupt.2012.11.001
PMCID: PMC4070431  PMID: 23154072
PL-3994; Natriuretic peptide receptors; Atrial natriuretic peptide; Brain natriuretic peptide; Neutral endopeptidase sensitivity; Bronchodilator
2.  C-027 Inhibits IgE-mediated passive sensitization bronchoconstriction and acts as a histamine and serotonin antagonist in human airways 
Atopic asthma is poorly controlled by current therapies. Newer therapies and novel antihistamines are, therefore, required to treat patients whose atopic asthma is not controlled. For the first time, C-027 is shown to antagonize histamine, IgE-mediated and serotonin-induced contraction in human airways and vessels. Human precision-cut lung slices (PCLS, 250 µm thick), containing an airway or blood vessel, were pretreated with either C-027 (2 hours) or with vehicle alone and were contracted with histamine or serotonin. Known antihistamine was used as a comparator in antihistamine studies. Also, human airways were contracted via IgE passive sensitization in the presence or absence of C-027 or fexofenadine. Affinity of C-027 toward human G-protein coupled receptors was also determined, as well as the drug's biodistribution in murine model. C-027 was shown to have the highest affinity toward human histamine and serotonin receptors. Subsequently, C-027 was shown to antagonize histamine- and serotonin-induced airway and vascular smooth muscle contraction, respectively, and histamine-released bronchocontraction mediated by IgE passive sensitization in human small airways. C-027 also inhibited histamine-mediated single-cell calcium ion release. Low levels of C-027 were found in murine brain tissue. Collectively, these data suggest that C-027 markedly inhibits IgE-induced bronchoconstriction and antagonizes histamine and serotonin-contraction with little biodistribution in the brain. The compound may offer a future therapy for allergen-induced airway hyperresponsiveness in patients with asthma.
doi:10.2500/aap.2011.32.3460
PMCID: PMC3968313  PMID: 22195688
Airway smooth muscle; allergy; antagonist; anti-histamine; anti-serotonic; asthma; IgE mediated; novel compound; PCLS; reverse agonist
3.  20-HETE Mediates Ozone-Induced, Neutrophil-Independent Airway Hyper-Responsiveness in Mice 
PLoS ONE  2010;5(4):e10235.
Background
Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways.
Methodology/Principal Findings
Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment.
Conclusions/Significance
These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.
doi:10.1371/journal.pone.0010235
PMCID: PMC2857875  PMID: 20422032

Results 1-3 (3)