PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Telomere Length and Physical Performance at Older Ages: An Individual Participant Meta-Analysis 
PLoS ONE  2013;8(7):e69526.
Background
Telomeres are involved in cellular ageing and shorten with increasing age. If telomere length is a valuable biomarker of ageing, then telomere shortening should be associated with worse physical performance, an ageing trait, but evidence for such an association is lacking. The purpose of this study was to examine whether change in telomere length is associated with physical performance.
Methods
Using data from four UK adult cohorts (ages 53–80 years at baseline), we undertook cross-sectional and longitudinal analyses. We analysed each study separately and then used meta-analytic methods to pool the results. Physical performance was measured using walking and chair rise speed, standing balance time and grip strength. Telomere length was measured by quantitative real-time polymerase chain reaction (PCR) in whole blood at baseline and follow-up (time 1, time 2).
Results
Total sample sizes in meta-analyses ranged from 1,217 to 3,707. There was little evidence that telomere length was associated with walking speed, balance or grip strength, though weak associations were seen with chair rise speed and grip strength at baseline (p = 0.02 and 0.01 respectively). Faster chair rise speed at follow-up, was associated with a smaller decline in telomere length between time 1 and time 2 (standardised coefficient per SD increase 0.061, 95% CI 0.006, 0.115, p = 0.03) but this was consistent with chance (p = 0.08) after further adjustment.
Conclusions
Whereas shortening of leukocyte telomeres might be an important measure of cellular ageing, there is little evidence that it is a strong biomarker for physical performance.
doi:10.1371/journal.pone.0069526
PMCID: PMC3724915  PMID: 23922731
2.  Physical capability and subsequent positive mental wellbeing in older people: findings from five HALCyon cohorts 
Age  2013;36(1):445-456.
Objective measures of physical capability are being used in a growing number of studies as biomarkers of healthy ageing. However, very little research has been done to assess the impact of physical capability on subsequent positive mental wellbeing, the maintenance of which is widely considered to be an essential component of healthy ageing. We aimed to test the associations of grip strength and walking, timed get up and go and chair rise speeds (assessed at ages 53 to 82 years) with positive mental wellbeing assessed using the Warwick–Edinburgh Mental Wellbeing Scale (WEMWBS) 5 to 10 years later. Data were drawn from five British cohorts participating in the Healthy Ageing across the Life Course research collaboration. Data from each study were analysed separately and then combined using random-effects meta-analyses. Higher levels of physical capability were consistently associated with higher subsequent levels of wellbeing; for example, a 1SD increase in grip strength was associated with an age and sex-adjusted mean difference in WEMWBS score of 0.81 (0.25, 1.37), equivalent to 10 % of a standard deviation (three studies, N = 3,096). When adjusted for body size, health status, living alone, socioeconomic position and neuroticism the associations remained albeit attenuated. The finding of these consistent modest associations across five studies, spanning early and later old age, highlights the importance of maintaining physical capability in later life and provides additional justification for using objective measures of physical capability as markers of healthy ageing.
Electronic supplementary material
The online version of this article (doi:10.1007/s11357-013-9553-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s11357-013-9553-8
PMCID: PMC3818137  PMID: 23818103
Physical capability; Positive mental wellbeing; Grip strength; Walking speed; Chair rise time
3.  Body Mass Index, Muscle Strength and Physical Performance in Older Adults from Eight Cohort Studies: The HALCyon Programme 
PLoS ONE  2013;8(2):e56483.
Objective
To investigate the associations of body mass index (BMI) and grip strength with objective measures of physical performance (chair rise time, walking speed and balance) including an assessment of sex differences and non-linearity.
Methods
Cross-sectional data from eight UK cohort studies (total N = 16 444) participating in the Healthy Ageing across the Life Course (HALCyon) research programme, ranging in age from 50 to 90+ years at the time of physical capability assessment, were used. Regression models were fitted within each study and meta-analysis methods used to pool regression coefficients across studies and to assess the extent of heterogeneity between studies.
Results
Higher BMI was associated with poorer performance on chair rise (N = 10 773), walking speed (N = 9 761) and standing balance (N = 13 921) tests. Higher BMI was associated with stronger grip strength in men only. Stronger grip strength was associated with better performance on all tests with a tendency for the associations to be stronger in women than men; for example, walking speed was higher by 0.43 cm/s (0.14, 0.71) more per kg in women than men. Both BMI and grip strength remained independently related with performance after mutual adjustment, but there was no evidence of effect modification. Both BMI and grip strength exhibited non-linear relations with performance; those in the lowest fifth of grip strength and highest fifth of BMI having particularly poor performance. Findings were similar when waist circumference was examined in place of BMI.
Conclusion
Older men and women with weak muscle strength and high BMI have considerably poorer performance than others and associations were observed even in the youngest cohort (age 53). Although causality cannot be inferred from observational cross-sectional studies, our findings suggest the likely benefit of early assessment and interventions to reduce fat mass and improve muscle strength in the prevention of future functional limitations.
doi:10.1371/journal.pone.0056483
PMCID: PMC3577921  PMID: 23437142
4.  Genetic markers of bone and joint health and physical capability in older adults: the HALCyon programme 
Bone  2013;52(1):278-285.
Background
Good bone and joint health is essential for the physical tasks of daily living and poorer indicators of physical capability in older adults have been associated with increased mortality rates. Genetic variants of indicators of bone and joint health may be associated with measures of physical capability.
Methods
As part of the Healthy Ageing across the Life Course (HALCyon) programme, men and women aged between 52 and 90 + years from six UK cohorts were genotyped for a polymorphism associated with serum calcium (rs1801725, CASR), two polymorphisms associated with bone mineral density (BMD) (rs2941740, ESR1 and rs9594759, RANKL) and one associated with osteoarthritis risk rs3815148 (COG5). Meta-analysis was used to pool within-study effects of the associations between each of the polymorphisms and measures of physical capability: grip strength, timed walk or get up and go, chair rises and standing balance.
Results
Few important associations were observed among the several tests. We found that carriers of the serum calcium-raising allele had poorer grip strength compared with non-carriers (pooled p = 0.05, n = 11,239) after adjusting for age and sex. Inconsistent results were observed for the two variants associated with BMD and we found no evidence for an association between rs3815148 (COG5) and any of the physical capability measures.
Conclusion
Our findings suggest elevated serum calcium levels may lead to lower grip strength, though this requires further replication. Our results do not provide evidence for a substantial influence of these variants in ESR1, RANKL and COG5 on physical capability in older adults.
Highlights
► We examined associations between bone-related genotypes and physical capability. ► We conducted a meta-analysis on 12,836 middle-age adults. ► We found CASR may be associated with grip strength. ► No substantial support for specific bone mineral density variants and physical capability.
doi:10.1016/j.bone.2012.10.004
PMCID: PMC3526776  PMID: 23072920
BMD, bone mineral density; OA, osteoarthritis; BMI, body mass index; SNP, single nucleotide polymorphism; CaPS, Caerphilly Prospective Study; ELSA, English Longitudinal Study of Ageing; HAS, Hertfordshire Ageing Study; HCS, Hertfordshire Cohort Study; LBC1921, The Lothian Birth Cohort 1921; NSHD, National Survey of Health and Development; HWE, Hardy–Weinberg equilibrium; WHR, waist–hip ratio; GWAS, genome-wide association studies; Aging; Grip strength; Calcium; Bone mineral density; Osteoarthritis
5.  ACTN3 genotype, athletic status and lifecourse physical capability: meta-analysis of the published literature and findings from nine studies 
Human mutation  2011;32(9):1008-1018.
The ACTN3 R577X (rs1815739) genotype has been associated with athletic status and muscle phenotypes, though not consistently. Our objective was to conduct a meta-analysis of the published literature on athletic status and investigate its associations with physical capability in several new population-based studies. Relevant data were extracted from studies in the literature, comparing genotype frequencies between controls and sprint/power and endurance athletes. For lifecourse physical capability, data were used from two studies of adolescents and seven studies in the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, involving individuals aged between 53 and 90+ years. We found evidence from the published literature to support the hypothesis that in Europeans the RR genotype is more common among sprint/power athletes compared with their controls. There is currently no evidence that the X allele is advantageous to endurance athleticism. We found no association between R577X and grip strength (p-value=0.09, n=7672 in males; p-value=0.90, n=7839 in females), standing balance, timed get up and go or chair rises in our studies of physical capability. The ACTN3 R577X genotype is associated with sprint/power athletic status in Europeans, but does not appear to be associated with objective measures of physical capability in the general population.
doi:10.1002/humu.21526
PMCID: PMC3174315  PMID: 21542061
ACTN3; Actinin-3; athlete; aging; SNP; grip strength
6.  ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-Analysis of the Published Literature and Findings from Nine Studies 
Human Mutation  2011;32(9):1008-1018.
The ACTN3 R577X (rs1815739) genotype has been associated with athletic status and muscle phenotypes, although not consistently. Our objective was to conduct a meta-analysis of the published literature on athletic status and investigate its associations with physical capability in several new population-based studies. Relevant data were extracted from studies in the literature, comparing genotype frequencies between controls and sprint/power and endurance athletes. For life course physical capability, data were used from two studies of adolescents and seven studies in the Healthy Ageing across the Life Course (HALCyon) collaborative research program, involving individuals aged between 53 and 90+ years. We found evidence from the published literature to support the hypothesis that in Europeans the RR genotype is more common among sprint/power athletes compared with their controls. There is currently no evidence that the X allele is advantageous to endurance athleticism. We found no association between R577X and grip strength (P = 0.09, n = 7,672 in males; P = 0.90, n = 7,839 in females), standing balance, timed get up and go, or chair rises in our studies of physical capability. The ACTN3 R577X genotype is associated with sprint/power athletic status in Europeans, but does not appear to be associated with objective measures of physical capability in the general population. Hum Mutat 32:1–11, 2011. © 2011 Wiley-Liss, Inc.
doi:10.1002/humu.21526
PMCID: PMC3174315  PMID: 21542061
ACTN3; Actinin-3; athlete; aging; SNP; grip strength
7.  Absence of association of a SNP in the TERT-CLPTM1L locus with age-related phenotypes in a large multi-cohort study: the HALCyon program 
Aging cell  2011;10(3):520-532.
Summary
Background
Several age-related traits are associated with shorter telomeres, the structures that cap the end of linear chromosomes. A common polymorphism near the telomere maintenance gene TERT has been associated with several cancers, but relationships with other ageing traits such as physical capability have not been reported.
Methods
As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women aged between 44 and 90 years from 9 UK cohorts were genotyped for the single nucleotide polymorphism (SNP) rs401681. We then investigated relationships between the SNP and 30 age-related phenotypes, including cognitive and physical capability, blood lipid levels and lung function, pooling within-study genotypic effects in meta-analyses.
Results
No significant associations were found between the SNP and any of the cognitive performance tests (e.g. pooled beta per T allele for word recall z-score=0.02, 95% CI: -0.01- 0.04, p-value=0.12, n=18,737), physical performance tests (e.g. pooled beta for grip strength=-0.02, 95% CI:-0.045- 0.006, p-value=0.14, n=11,711), blood pressure, lung function or blood test measures. Similarly, no differences in observations were found when considering follow-up measures of cognitive or physical performance after adjusting for its measure at an earlier assessment.
Conclusion
The lack of associations between SNP rs401681 and a wide range of age-related phenotypes investigated in this large multi-cohort study suggests that whilst this SNP may be associated with cancer, it is not an important contributor to other markers of ageing.
doi:10.1111/j.1474-9726.2011.00687.x
PMCID: PMC3094481  PMID: 21332924
Aging; ageing; middle-aged; telomere; cognition; physical
8.  A Multi-Cohort Study of Polymorphisms in the GH/IGF Axis and Physical Capability: The HALCyon Programme 
PLoS ONE  2012;7(1):e29883.
Background
Low muscle mass and function have been associated with poorer indicators of physical capability in older people, which are in-turn associated with increased mortality rates. The growth hormone/insulin-like growth factor (GH/IGF) axis is involved in muscle function and genetic variants in genes in the axis may influence measures of physical capability.
Methods
As part of the Healthy Ageing across the Life Course (HALCyon) programme, men and women from seven UK cohorts aged between 52 and 90 years old were genotyped for six polymorphisms: rs35767 (IGF1), rs7127900 (IGF2), rs2854744 (IGFBP3), rs2943641 (IRS1), rs2665802 (GH1) and the exon-3 deletion of GHR. The polymorphisms have previously been robustly associated with age-related traits or are potentially functional. Meta-analysis was used to pool within-study genotypic effects of the associations between the polymorphisms and four measures of physical capability: grip strength, timed walk or get up and go, chair rises and standing balance.
Results
Few important associations were observed among the several tests. We found evidence that rs2665802 in GH1 was associated with inability to balance for 5 s (pooled odds ratio per minor allele = 0.90, 95% CI: 0.82–0.98, p-value = 0.01, n = 10,748), after adjusting for age and sex. We found no evidence for other associations between the polymorphisms and physical capability traits.
Conclusion
Our findings do not provide evidence for a substantial influence of these common polymorphisms in the GH/IGF axis on objectively measured physical capability levels in older adults.
doi:10.1371/journal.pone.0029883
PMCID: PMC3254646  PMID: 22253814
9.  Age and Gender Differences in Physical Capability Levels from Mid-Life Onwards: The Harmonisation and Meta-Analysis of Data from Eight UK Cohort Studies 
PLoS ONE  2011;6(11):e27899.
Using data from eight UK cohorts participating in the Healthy Ageing across the Life Course (HALCyon) research programme, with ages at physical capability assessment ranging from 50 to 90+ years, we harmonised data on objective measures of physical capability (i.e. grip strength, chair rising ability, walking speed, timed get up and go, and standing balance performance) and investigated the cross-sectional age and gender differences in these measures. Levels of physical capability were generally lower in study participants of older ages, and men performed better than women (for example, results from meta-analyses (N = 14,213 (5 studies)), found that men had 12.62 kg (11.34, 13.90) higher grip strength than women after adjustment for age and body size), although for walking speed, this gender difference was attenuated after adjustment for body size. There was also evidence that the gender difference in grip strength diminished with increasing age,whereas the gender difference in walking speed widened (p<0.01 for interactions between age and gender in both cases). This study highlights not only the presence of age and gender differences in objective measures of physical capability but provides a demonstration that harmonisation of data from several large cohort studies is possible. These harmonised data are now being used within HALCyon to understand the lifetime social and biological determinants of physical capability and its changes with age.
doi:10.1371/journal.pone.0027899
PMCID: PMC3218057  PMID: 22114723
10.  Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis 
PLoS ONE  2011;6(1):e15564.
Background
Grip strength, walking speed, chair rising and standing balance time are objective measures of physical capability that characterise current health and predict survival in older populations. Socioeconomic position (SEP) in childhood may influence the peak level of physical capability achieved in early adulthood, thereby affecting levels in later adulthood. We have undertaken a systematic review with meta-analyses to test the hypothesis that adverse childhood SEP is associated with lower levels of objectively measured physical capability in adulthood.
Methods and Findings
Relevant studies published by May 2010 were identified through literature searches using EMBASE and MEDLINE. Unpublished results were obtained from study investigators. Results were provided by all study investigators in a standard format and pooled using random-effects meta-analyses. 19 studies were included in the review. Total sample sizes in meta-analyses ranged from N = 17,215 for chair rise time to N = 1,061,855 for grip strength. Although heterogeneity was detected, there was consistent evidence in age adjusted models that lower childhood SEP was associated with modest reductions in physical capability levels in adulthood: comparing the lowest with the highest childhood SEP there was a reduction in grip strength of 0.13 standard deviations (95% CI: 0.06, 0.21), a reduction in mean walking speed of 0.07 m/s (0.05, 0.10), an increase in mean chair rise time of 6% (4%, 8%) and an odds ratio of an inability to balance for 5s of 1.26 (1.02, 1.55). Adjustment for the potential mediating factors, adult SEP and body size attenuated associations greatly. However, despite this attenuation, for walking speed and chair rise time, there was still evidence of moderate associations.
Conclusions
Policies targeting socioeconomic inequalities in childhood may have additional benefits in promoting the maintenance of independence in later life.
doi:10.1371/journal.pone.0015564
PMCID: PMC3027621  PMID: 21297868
11.  Objective measures of physical capability and subsequent health: a systematic review 
Age and Ageing  2010;40(1):14-23.
Background: measures of physical capability may be predictive of subsequent health, but existing published studies have not been systematically reviewed. We hypothesised that weaker grip strength, slower walking speed and chair rising and shorter standing balance time, in community-dwelling populations, would be associated with higher subsequent risk of fracture, cognitive outcomes, cardiovascular disease, hospitalisation and institutionalisation.
Methods: studies were identified through systematic searches of the electronic databases MEDLINE and EMBASE (to May 2009). Reference lists of eligible papers were also manually searched.
Results: twenty-four papers had examined the associations between at least one physical capability measure and one of the outcomes. As the physical capability measures and outcomes had been assessed and categorised in different ways in different studies, and there were differences in the potential confounding factors taken into account, this made it impossible to pool results. There were more studies examining fractures than other outcomes, and grip strength and walking speed were the most commonly examined capability measures. Most studies found that weaker grip strength and slower walking speed were associated with increased risk of future fractures and cognitive decline, but residual confounding may explain results in some studies. Associations between physical capability levels and the other specified outcomes have not been tested widely.
Conclusions: there is some evidence to suggest that objective measures of physical capability may be predictors of subsequent health in older community-dwelling populations. Most hypothesised associations have not been studied sufficiently to draw definitive conclusions suggesting the need for further research.
doi:10.1093/ageing/afq117
PMCID: PMC3000177  PMID: 20843964
grip strength; walking speed; chair rises; standing balance; fracture; cognitive outcomes; cardiovascular disease; systematic review
12.  Life course body mass index and risk of knee osteoarthritis at the age of 53 years: evidence from the 1946 British birth cohort study 
Annals of the Rheumatic Diseases  2011;71(5):655-660.
Introduction
The authors examined how body mass index (BMI) across life is linked to the risk of midlife knee osteoarthritis (OA), testing whether prolonged exposure to high BMI or high BMI at a particular period has the greatest influence on the risk of knee OA.
Methods
A population-based British birth cohort of 3035 men and women underwent clinical examination for knee OA at age 53 years.Heights and weights were measured 10 times from 2 to 53 years. Analyses were stratified by gender and adjusted for occupation and activity levels.
Results
The prevalence of knee OA was higher in women than in men (12.9% (n=194) vs 7.4% (n=108)). In men, the association between BMI and later knee OA was evident at 20 years (p=0.038) and remained until 53 years (OR per z-score 1.38 (95% CI 1.11 to 1.71)). In women, there was evidence for an association at 15 years (p=0.003); at 53 years, the OR was 1.89 (95% CI 1.59 to 2.24) per z-score increase in BMI. Changes in BMI from childhood in women and from adolescence in men were also positively associated with knee OA. A structured modelling approach to disentange the way in which BMI is linked to knee OA suggested that prolonged exposure to high BMI throughout adulthood carried the highest risk and that there was no additional risk conferred from adolescence once adult BMI had been accounted for.
Conclusion
This study suggests that the risk of knee OA accumulates from exposure to a high BMI through adulthood.
doi:10.1136/ard.2011.154021
PMCID: PMC3329229  PMID: 21979003
13.  Absence of association of a single-nucleotide polymorphism in the TERT-CLPTM1L locus with age-related phenotypes in a large multicohort study: the HALCyon programme 
Aging Cell  2011;10(3):520-532.
Several age-related traits are associated with shorter telomeres, the structures that cap the end of linear chromosomes. A common polymorphism near the telomere maintenance gene TERT has been associated with several cancers, but relationships with other aging traits such as physical capability have not been reported. As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women aged between 44 and 90 years from nine UK cohorts were genotyped for the single-nucleotide polymorphism (SNP) rs401681. We then investigated relationships between the SNP and 30 age-related phenotypes, including cognitive and physical capability, blood lipid levels and lung function, pooling within-study genotypic effects in meta-analyses. No significant associations were found between the SNP and any of the cognitive performance tests (e.g. pooled beta per T allele for word recall z-score = 0.02, 95% CI: −0.01 to 0.04, P-value = 0.12, n = 18 737), physical performance tests (e.g. pooled beta for grip strength = −0.02, 95% CI: −0.045 to 0.006, P-value = 0.14, n = 11 711), blood pressure, lung function or blood test measures. Similarly, no differences in observations were found when considering follow-up measures of cognitive or physical performance after adjusting for its measure at an earlier assessment. The lack of associations between SNP rs401681 and a wide range of age-related phenotypes investigated in this large multicohort study suggests that while this SNP may be associated with cancer, it is not an important contributor to other markers of aging.
doi:10.1111/j.1474-9726.2011.00687.x
PMCID: PMC3094481  PMID: 21332924
aging; cognition; middle-aged; physical; telomere

Results 1-13 (13)