Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  A phase 1, open-label, dose-escalation study of BIIB022 (anti-IGF-1R monoclonal antibody) in subjects with relapsed or refractory solid tumors 
Investigational New Drugs  2014;32(3):518-525.
Purpose The IGF-1R signaling pathway has been implicated in multiple cancers as important for cell survival, proliferation, invasion and metastasis. BIIB022 is a non-glycosylated human IgG4 monoclonal antibody (mAb) with specificity for IGF-1R. Unlike other anti-IGF1R antibodies, BIIB022 has no effector functions. Additionally, inhibition is via an allosteric rather than competitive mechanism, which further differentiates this antibody from others. We sought to determine the safety and tolerability of BIIB022 and determine the pharmacokinetic (PK) and pharmacodynamic (PD) profile of this antibody. Methods A multi-institutional phase I study evaluated the safety of escalating doses of BIIB022 given IV q3wk until progression or unacceptable toxicity in patients with advanced solid tumors. Five sequential BIIB022 dose cohorts were evaluated using a standard 3 + 3 dose-escalation design (1.5, 5. 10, 20, 30 mg/kg); 10 additional patients were treated at the recommended phase 2 dose. Results 34 patients were treated. Toxicities were manageable and mostly low grade; grade 3–4 hyperglycemia was not observed. No RECIST responses were observed, although three patients had metabolic responses associated with prolonged stable disease. The PK of BIIB022 was nearly linear in the dose range from 10 to 30 mg/kg, with some nonlinearity at lower doses (1.5–5.0 mg/kg), likely due to target-mediated drug disposition of BIIB022 at low serum concentrations. PD analyses showed decrease in IGF-1R levels on leucocytes, with stable serum values of IGF-1 and IGF-2. Conclusions BIIB022 can be safely given at 30 mg/kg IV every 3 weeks with preliminary evidence of biological activity in selected patients.
PMCID: PMC4045341  PMID: 24458261
IGF-1R; Antibody; Phase I; Sarcoma; FDG-PET
2.  A Phase I Dose-Escalation Study of Danusertib (PHA-739358) Administered as a 24-hour Infusion With and Without G-CSF in a 14-day Cycle in Patients with Advanced Solid Tumors 
This study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of the intravenous pan-aurora kinase inhibitor PHA-739358, danusertib, in patients with advanced solid tumors.
Experimental Design
In Part 1, patients received escalating doses of danusertib (24-h infusion every 14 days) without filgrastim (G-CSF). Febrile neutropenia was the dose-limiting toxicity without G-CSF. Further dose escalation was performed in part 2 with G-CSF. Blood samples were collected for danusertib pharmacokinetics and pharmacodynamics. Skin biopsies were collected to assess histone H3 phosphorylation (pH3).
Fifty-six patients were treated, 40 in part 1 and 16 in part 2. Febrile neutropenia was the dose limiting toxicity in Part 1 without G-CSF. Most other adverse events were grade 1–2, occurring at doses ≥360 mg/m2 with similar incidence in parts 1 and 2. The MTD without G-CSF is 500 mg/m2. The recommended phase 2 dose (RP2D) in Part 2 with G-CSF is 750 mg/m2. Danusertib demonstrated dose-proportional pharmacokinetics in parts 1 and 2 with a median half-life of 18–26 hours. pH3 modulation in skin biopsies was observed at ≥500 mg/m2. One patient with refractory small cell lung cancer (1000 mg/m2 with G-CSF) had an objective response lasting 23 weeks. One patient with refractory ovarian cancer had 27% tumor regression and 30% CA125 decline.
Danusertib was well tolerated with target inhibition in skin at ≥500 mg/m2. Preliminary evidence of anti-tumor activity, including a PR and several occurrences of prolonged stable disease (SD), was seen across a variety of advanced refractory cancers. Phase II studies are ongoing.
PMCID: PMC2826106  PMID: 19825950
Danusertib; PHA-739358; Aurora Kinase Inhibitor; phase I trial; solid tumors
3.  Phase 1 study of MLN8054, a selective inhibitor of Aurora A kinase in patients with advanced solid tumors 
Aurora A kinase is critical in assembly and function of the mitotic spindle. It is overexpressed in various tumor types and implicated in oncogenesis and tumor progression. This trial evaluated the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of MLN8054, a selective small-molecule inhibitor of Aurora A kinase.
In this first-in-human, dose-escalation study, MLN8054 was given orally for 7, 14, or 21 days followed by a 14-day treatment-free period. Escalating cohorts of 3–6 patients with advanced solid tumors were treated until DLT was seen in ≥2 patients in a cohort. Serial blood samples were collected for pharmacokinetics and skin biopsies were collected for pharmacodynamics.
Sixty-one patients received 5, 10, 20, 30 or 40 mg once daily for 7 days; 25, 35, 45 or 55 mg/day in four divided doses (QID) for 7 days; or 55, 60, 70 or 80 mg/day plus methylphenidate or modafinil with daytime doses (QID/M) for 7–21 days. DLTs of reversible grade 3 benzodiazepine-like effects defined the estimated MTD of 60 mg QID/M for 14 days. MLN8054 was absorbed rapidly, exposure was dose-proportional, and terminal half-life was 30-40 hours. Three patients had stable disease for >6 cycles.
MLN8054 dosing for up to 14 days of a 28-day cycle was feasible. Reversible somnolence was dose limiting and prevented achievement of plasma concentrations predicted necessary for target modulation. A recommended dose for investigation in phase 2 trials was not established. A second-generation Aurora A kinase inhibitor is in development.
PMCID: PMC3026871  PMID: 20607239
MLN8054; Aurora A kinase; dose-limiting toxicity; pharmacokinetics; pharmacodynamics
4.  A Phase I Study of the Safety and Pharmacokinetics of Trabectedin in Combination With Pegylated Liposomal Doxorubicin in Patients With Advanced Malignancies 
To determine the maximum tolerated dose (MTD), safety, potential pharmacokinetic (PK) interactions, and effect on liver histology of trabectedin in combination with pegylated liposomal doxorubicin (PLD) for advanced malignancies.
Patients and Methods
Entry criteria for the 36 patients included normal liver function, prior doxorubicin exposure <250 mg/m2, and normal cardiac function. A 1-hour PLD (30 mg/m2) infusion was followed immediately by 1 of 6 trabectedin doses (0.4, 0.6, 0.75, 0.9, 1.1, and 1.3 mg/m2) infused over 3 hours, repeated every 21 days until evidence of complete response (CR), disease progression, or unacceptable txicity. Plasma samples were obtained to assess PK profiles.
The MTD of trabectedin was 1.1 mg/m2. Drug-related grade 3 and 4 toxicities were neutropenia (31%) and elevated transaminases (31%). Six patients responded (1 CR, 5 partial responses), with an overall response rate of 16.7%, and 14 had stable disease >4 months (39%). Neither drug had its PK affected significantly by concomitant administration compared to trabectedin and PLD each given as a single agent.
Trabectedin combined with PLD is generally well tolerated at therapeutic doses of both drugs in pretreated patients with diverse tumor types, and appears to provide clinical benefit. These results support the need for additional studies of this combination in appropriate cancer types.
PMCID: PMC2598415  PMID: 18497430
trabectedin; ET-743; pegylated liposomal doxorubicin (PLD); sarcomas; ovarian cancer

Results 1-4 (4)