PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  A comprehensive analysis of piRNAs from adult human testis and their relationship with genes and mobile elements 
BMC Genomics  2014;15(1):545.
Background
Piwi-interacting RNAs (piRNAs) are a recently discovered class of small non-coding RNAs whose best-understood function is to repress mobile element (ME) activity in animal germline. To date, nearly all piRNA studies have been conducted in model organisms and little is known about piRNA diversity, target specificity and biological function in human.
Results
Here we performed high-throughput sequencing of piRNAs from three human adult testis samples. We found that more than 81% of the ~17 million putative piRNAs mapped to ~6,000 piRNA-producing genomic clusters using a relaxed definition of clusters. A set of human protein-coding genes produces a relatively large amount of putative piRNAs from their 3’UTRs, and are significantly enriched for certain biological processes, suggestive of non-random sampling by the piRNA biogenesis machinery. Up to 16% of putative piRNAs mapped to a few hundred annotated long non-coding RNA (lncRNA) genes, suggesting that some lncRNA genes can act as piRNA precursors. Among major ME families, young families of LTR and endogenous retroviruses have a greater association with putative piRNAs than other MEs. In addition, piRNAs preferentially mapped to specific regions in the consensus sequences of several ME (sub)families and some piRNA mapping peaks showed patterns consistent with the “ping-pong” cycle of piRNA targeting and amplification.
Conclusions
Overall our data provide a comprehensive analysis and improved annotation of human piRNAs in adult human testes and shed new light into the relationship of piRNAs with protein-coding genes, lncRNAs, and mobile genetic elements in human.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-545) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-545
PMCID: PMC4094622  PMID: 24981367
Human piRNA; piRNA cluster; Protein coding gene; Mobile element; High-throughput sequencing
2.  Evidence for the biogenesis of more than 1,000 novel human microRNAs 
Genome Biology  2014;15(4):R57.
Background
MicroRNAs (miRNAs) are established regulators of development, cell identity and disease. Although nearly two thousand human miRNA genes are known and new ones are continuously discovered, no attempt has been made to gauge the total miRNA content of the human genome.
Results
Employing an innovative computational method on massively pooled small RNA sequencing data, we report 2,469 novel human miRNA candidates of which 1,098 are validated by in-house and published experiments. Almost 300 candidates are robustly expressed in a neuronal cell system and are regulated during differentiation or when biogenesis factors Dicer, Drosha, DGCR8 or Ago2 are silenced. To improve expression profiling, we devised a quantitative miRNA capture system. In a kidney cell system, 400 candidates interact with DGCR8 at transcript positions that suggest miRNA hairpin recognition, and 1,000 of the new miRNA candidates interact with Ago1 or Ago2, indicating that they are directly bound by miRNA effector proteins. From kidney cell CLASH experiments, in which miRNA-target pairs are ligated and sequenced, we observe hundreds of interactions between novel miRNAs and mRNA targets. The novel miRNA candidates are specifically but lowly expressed, raising the possibility that not all may be functional. Interestingly, the majority are evolutionarily young and overrepresented in the human brain.
Conclusions
In summary, we present evidence that the complement of human miRNA genes is substantially larger than anticipated, and that more are likely to be discovered in the future as more tissues and experimental conditions are sequenced to greater depth.
doi:10.1186/gb-2014-15-4-r57
PMCID: PMC4054668  PMID: 24708865
3.  High Definition Spectral Domain Optical Coherence Tomography Findings in Three Patients with Solar Retinopathy and Review of the Literature 
Purpose:
To describe ocular findings in 3 cases of solar retinopathy using high definition, spectral domain optical coherence tomography (SD-OCT) and review the literature for optical coherence tomography (OCT) characteristics associated with worse vision.
Methods:
Case series and retrospective review of clinical features and Spectralis SD-OCT (Heidelberg Engineering, Vista, California, United States of America). A literature review of OCT findings in cases of solar retinopathy reported on MEDLINE was also performed and analyzed.
Results:
Six eyes of 3 patients with solar retinopathy revealed significant foveal pathology. Visual acuity ranged from Snellen 20/30 to 20/50. High definition SD-OCT demonstrated defects at the level of the inner and outer segment junction of the photoreceptors as well as in the inner high reflective layer. There was a significant correlation between chronic disruption of the inner photoreceptor junction with worse vision based on the current case series and literature review.
Conclusions:
Screening patients with exposure to central foveal damage from solar retinopathy with high definition SD-OCT improves diagnosis and assessment of photoreceptor damage and vision loss.
doi:10.2174/1874364101206010029
PMCID: PMC3394112  PMID: 22798967
Solar retinopathy; fovea; spectral domain optical coherence tomography; Spectralis SD-OCT.

Results 1-3 (3)