PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Oral and Vaginal Epithelial Cell Lines Bind and Transfer Cell-Free Infectious HIV-1 to Permissive Cells but Are Not Productively Infected 
PLoS ONE  2014;9(5):e98077.
The majority of HIV-1 infections worldwide are acquired via mucosal surfaces. However, unlike the vaginal mucosa, the issue of whether the oral mucosa can act as a portal of entry for HIV-1 infection remains controversial. To address potential differences with regard to the fate of HIV-1 after exposure to oral and vaginal epithelium, we utilized two epithelial cell lines representative of buccal (TR146) and pharyngeal (FaDu) sites of the oral cavity and compared them with a cell line derived from vaginal epithelium (A431) in order to determine (i) HIV-1 receptor gene and protein expression, (ii) whether HIV-1 genome integration into epithelial cells occurs, (iii) whether productive viral infection ensues, and (iv) whether infectious virus can be transferred to permissive cells. Using flow cytometry to measure captured virus by HIV-1 gp120 protein detection and western blot to detect HIV-1 p24 gag protein, we demonstrate that buccal, pharyngeal and vaginal epithelial cells capture CXCR4- and CCR5-utilising virus, probably via non-canonical receptors. Both oral and vaginal epithelial cells are able to transfer infectious virus to permissive cells either directly through cell-cell attachment or via transcytosis of HIV-1 across epithelial cells. However, HIV-1 integration, as measured by real-time PCR and presence of early gene mRNA transcripts and de novo protein production were not detected in either epithelial cell type. Importantly, both oral and vaginal epithelial cells were able to support integration and productive infection if HIV-1 entered via the endocytic pathway driven by VSV-G. Our data demonstrate that under normal conditions productive HIV-1 infection of epithelial cells leading to progeny virion production is unlikely, but that epithelial cells can act as mediators of systemic viral dissemination through attachment and transfer of HIV-1 to permissive cells.
doi:10.1371/journal.pone.0098077
PMCID: PMC4032250  PMID: 24857971
2.  Candida albicans HWP1 gene expression and host antibody responses in colonization and disease 
Journal of medical microbiology  2006;55(Pt 10):1323-1327.
In vivo expression of the developmentally regulated Candida albicans hyphal wall protein 1 (HWP1) gene was analysed in human subjects who were culture positive for C. albicans and had oral symptoms (n=40) or were asymptomatic (n=29), or had vaginal symptoms (n=40) or were asymptomatic (n=29). HWP1 mRNA was present regardless of symptoms, implicating hyphal and possibly pseudohyphal forms in mucosal carriage as well as disease. As expected, in control subjects without oral symptoms (n=10) and without vaginal symptoms (n=10) who were culture negative in oral and vaginal samples, HWP1 mRNA was not detected. However, exposure to Hwp1 in healthy culture-negative controls, as well as in oral candidiasis and asymptomatic mucosal infections, was shown by the existence of local salivary and systemic adaptive antibody responses to Hwp1. The results are consistent with a role for Hwp1 in gastrointestinal colonization as well as in mucosal symptomatic and asymptomatic infections. Overall, Hwp1 and hyphal growth forms appear to be important factors in benign and invasive interactions of C. albicans with human hosts.
doi:10.1099/jmm.0.46737-0
PMCID: PMC3244616  PMID: 17005778
3.  Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host–pathogen interactions 
We report the creation of a new low-estrogen murine model of concurrent oral and vaginal C. albicans colonization that resembles human candidal carriage at both mucosal sites. Weekly estrogen administration of 5 μg intramuscular and subcutaneously was optimal for enhancement of oral colonization and was essential for vaginal colonization. In BALB/c mice, a number of C. albicans clinical isolates (n = 3) colonized both oral and/or vaginal sites, but only strain 529L colonized 100% of mice persistently for over 5 weeks. Laboratory strains SC5314 and NCPF 3153 did not colonize the model; however, NCPF 3156 showed vaginal colonization up to week 5. Prior passaging through mice enhanced subsequent colonization of SC5314. Intranasal immunization with a C. albicans virulence antigen (secreted aspartyl proteinase 2) significantly reduced or abolished the fungal burden orally and vaginally by week 2 and 7. Our concurrent model of mucosal colonization reduces the numbers of experimental mice by half, can be used to assess potential vaccine candidates, and permits the detailed analysis of host–fungal interactions during the natural state of Candida colonization.
doi:10.1016/j.micinf.2007.01.012
PMCID: PMC3242973  PMID: 17383212
Candida albicans; Animal model; Oral; Vaginal
4.  MAPK, MKP1 and c-Fos Discriminate Candida albicans Yeast from Hyphae in Epithelial Cells 
Cell host & microbe  2010;8(3):225-235.
SUMMARY
Host mechanisms enabling discrimination between the commensal and pathogenic states of opportunistic pathogens are critical in mucosal defense and homeostasis. Here, we demonstrate that oral epithelial cells orchestrate an innate response to the human fungal pathogen Candida albicans via NF-κB and a bi-phasic MAPK response. Activation of NF-κB and the first MAPK phase, constituting c-Jun activation, is independent of morphology and due to the recognition of fungal cell wall structures. Activation of the second MAPK phase, constituting MKP1 and c-Fos activation, is dependent upon hypha-formation and fungal burdens, and correlates with proinflammatory responses. This MAPK-based discriminatory pathway may provide a mechanism for epithelial tissues to remain quiescent in the presence of low fungal burdens whilst responding specifically and strongly to damage-inducing hyphae when burdens increase. MAPK/MKP1/c-Fos activation may thus comprise a `danger response' pathway in vivo and may be critical in identifying when this normally commensal fungus has become pathogenic.
doi:10.1016/j.chom.2010.08.002
PMCID: PMC2991069  PMID: 20833374
5.  A Biphasic Innate Immune MAPK Response Discriminates between the Yeast and Hyphal Forms of Candida albicans in Epithelial Cells 
Cell Host & Microbe  2010;8(3):225-235.
Summary
Discriminating between commensal and pathogenic states of opportunistic pathogens is critical for host mucosal defense and homeostasis. The opportunistic human fungal pathogen Candida albicans is also a constituent of the normal oral flora and grows either as yeasts or hyphae. We demonstrate that oral epithelial cells orchestrate an innate response to C. albicans via NF-κB and a biphasic MAPK response. Activation of NF-κB and the first MAPK phase, constituting c-Jun activation, is independent of morphology and due to fungal cell wall recognition. Activation of the second MAPK phase, constituting MKP1 and c-Fos activation, is dependent upon hypha formation and fungal burdens and correlates with proinflammatory responses. Such biphasic response may allow epithelial tissues to remain quiescent under low fungal burdens while responding specifically and strongly to damage-inducing hyphae when burdens increase. MAPK/MKP1/c-Fos activation may represent a “danger response” pathway that is critical for identifying and responding to the pathogenic switch of commensal microbes.
Highlights
► NF-κB and MAPK control epithelial effector responses against Candida albicans ► c-Jun activation is independent of morphology and due to fungal cell wall recognition ► MAPK/MKP-1/c-Fos pathway activation is dependent on fungal hyphae and burdens ► MAPK discriminatory response may dictate C. albicans mucosal colonization in vivo
doi:10.1016/j.chom.2010.08.002
PMCID: PMC2991069  PMID: 20833374
6.  Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis 
Microbiology (Reading, England)  2008;154(Pt 11):3266-3280.
A quantitative real-time RT-PCR system was established to identify which secreted aspartyl proteinase (SAP) genes are most highly expressed and potentially contribute to Candida albicans infection of human epithelium in vitro and in vivo. C. albicans SC5314 SAP1–10 gene expression was monitored in organotypic reconstituted human epithelium (RHE) models, monolayers of oral epithelial cells, and patients with oral (n=17) or vaginal (n=17) candidiasis. SAP gene expression was also analysed in Δsap1–3, Δsap4–6, Δefg1 and Δefg1/cph1 mutants to determine whether compensatory SAP gene regulation occurs in the absence of distinct proteinase gene subfamilies. In monolayers, RHE models and patient samples SAP9 was consistently the most highly expressed gene in wild-type cells. SAP5 was the only gene significantly upregulated as infection progressed in both RHE models and was also highly expressed in patient samples. Interestingly, the SAP4–6 subfamily was generally more highly expressed in oral monolayers than in RHE models. SAP1 and SAP2 expression was largely unchanged in all model systems, and SAP3, SAP7 and SAP8 were expressed at low levels throughout. In Δsap1–3, expression was compensated for by increased expression of SAP5, and in Δsap4–6, expression was compensated for by SAP2: both were observed only in the oral RHE. Both Δsap1–3 and Δsap4–6 mutants caused RHE tissue damage comparable to the wild-type. However, addition of pepstatin A reduced tissue damage, indicating a role for the Sap family as a whole in inducing epithelial damage. With the hypha-deficient mutants, RHE tissue damage was significantly reduced in both Δefg1/cph1 and Δefg1, but SAP5 expression was only dramatically reduced in Δefg1/cph1 despite the absence of hyphal growth in both mutants. This indicates that hypha formation is the predominant cause of tissue damage, and that SAP5 expression can be hypha-independent and is not solely controlled by the Efg1 pathway but also by the Cph1 pathway. This is believed to be the first study to fully quantify SAP gene expression levels during human mucosal infections; the results suggest that SAP5 and SAP9 are the most highly expressed proteinase genes in vivo. However, the overall contribution of the Sap1–3 and Sap4–6 subfamilies individually in inducing epithelial damage in the RHE models appears to be low.
doi:10.1099/mic.0.2008/022293-0
PMCID: PMC2722715  PMID: 18957581
7.  Comparison of Human Immunodeficiency Virus Type 1-Specific Inhibitory Activities in Saliva and Other Human Mucosal Fluids▿  
Clinical and Vaccine Immunology  2006;13(10):1111-1118.
Several human mucosal fluids are known to possess an innate ability to inhibit human immunodeficiency virus type 1 (HIV-1) infection and replication in vitro. This study compared the HIV-1 inhibitory activities of several mucosal fluids, whole, submandibular/sublingual (sm/sl), and parotid saliva, breast milk, colostrum, seminal plasma, and cervicovaginal secretions, from HIV-1-seronegative donors by using a 3-day microtiter infection assay. A wide range of HIV-1 inhibitory activity was exhibited in all mucosal fluids tested, with some donors exhibiting high levels of activity while others showed significantly lower levels. Colostrum, whole milk, and whole saliva possessed the highest levels of anti-HIV-1 activity, seminal fluid, cervicovaginal secretions, and sm/sl exhibited moderate levels, and parotid saliva consistently demonstrated the lowest levels of HIV-1 inhibition. Fast protein liquid chromatography gel filtration studies revealed the presence of at least three distinct peaks of inhibitory activity against HIV-1 in saliva and breast milk. Incubation of unfractionated and fractionated whole saliva with antibodies raised against human lactoferrin (hLf), secretory leukocyte protease inhibitor (SLPI), and, to a lesser extent, MG2 (high-molecular-weight mucinous glycoprotein) reduced the HIV-1 inhibitory activity significantly. The results suggest that hLf and SLPI are two key components responsible for HIV-1 inhibitory activity in different mucosal secretions. The variation in HIV inhibitory activity between the fluids and between individuals suggests that there may be major differences in susceptibility to HIV infection depending both on the individual and on the mucosal fluid involved.
doi:10.1128/CDLI.00426-05
PMCID: PMC1595323  PMID: 16928883
8.  Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis 
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.
doi:10.1128/MMBR.67.3.400-428.2003
PMCID: PMC193873  PMID: 12966142
9.  In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis 
Infection and Immunity  1999;67(5):2482-2490.
Secreted aspartyl proteinases are putative virulence factors in Candida infections. Candida albicans possesses at least nine members of a SAP gene family, all of which have been sequenced. Although the expression of the SAP genes has been extensively characterized under laboratory growth conditions, no studies have analyzed in detail the in vivo expression of these proteinases in human oral colonization and infection. We have developed a reliable and sensitive procedure to detect C. albicans mRNA from whole saliva of patients with oral C. albicans infection and those with asymptomatic Candida carriage. The reverse transcription-PCR protocol was used to determine which of the SAP1 to SAP7 genes are expressed by C. albicans during colonization and infection of the oral cavity. SAP2 and the SAP4 to SAP6 subfamily were the predominant proteinase genes expressed in the oral cavities of both Candida carriers and patients with oral candidiasis; SAP4, SAP5, or SAP6 mRNA was detected in all subjects. SAP1 and SAP3 transcripts were observed only in patients with oral candidiasis. SAP7 mRNA expression, which has never been demonstrated under laboratory conditions, was detected in several of the patient samples. All seven SAP genes were simultaneously expressed in some patients with oral candidiasis. This is the first detailed study showing that the SAP gene family is expressed by C. albicans during colonization and infection in humans and that C. albicans infection is associated with the differential expression of individual SAP genes which may be involved in the pathogenesis of oral candidiasis.
PMCID: PMC115994  PMID: 10225911

Results 1-9 (9)