PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Filling gaps in PPAR-alpha signaling through comparative nutrigenomics analysis 
BMC Genomics  2009;10:596.
Background
The application of high-throughput genomic tools in nutrition research is a widespread practice. However, it is becoming increasingly clear that the outcome of individual expression studies is insufficient for the comprehensive understanding of such a complex field. Currently, the availability of the large amounts of expression data in public repositories has opened up new challenges on microarray data analyses. We have focused on PPARα, a ligand-activated transcription factor functioning as fatty acid sensor controlling the gene expression regulation of a large set of genes in various metabolic organs such as liver, small intestine or heart. The function of PPARα is strictly connected to the function of its target genes and, although many of these have already been identified, major elements of its physiological function remain to be uncovered. To further investigate the function of PPARα, we have applied a cross-species meta-analysis approach to integrate sixteen microarray datasets studying high fat diet and PPARα signal perturbations in different organisms.
Results
We identified 164 genes (MDEGs) that were differentially expressed in a constant way in response to a high fat diet or to perturbations in PPARs signalling. In particular, we found five genes in yeast which were highly conserved and homologous of PPARα targets in mammals, potential candidates to be used as models for the equivalent mammalian genes. Moreover, a screening of the MDEGs for all known transcription factor binding sites and the comparison with a human genome-wide screening of Peroxisome Proliferating Response Elements (PPRE), enabled us to identify, 20 new potential candidate genes that show, both binding site, both change in expression in the condition studied. Lastly, we found a non random localization of the differentially expressed genes in the genome.
Conclusion
The results presented are potentially of great interest to resume the currently available expression data, exploiting the power of in silico analysis filtered by evolutionary conservation. The analysis enabled us to indicate potential gene candidates that could fill in the gaps with regards to the signalling of PPARα and, moreover, the non-random localization of the differentially expressed genes in the genome, suggest that epigenetic mechanisms are of importance in the regulation of the transcription operated by PPARα.
doi:10.1186/1471-2164-10-596
PMCID: PMC2801700  PMID: 20003344
2.  Using Pathway Signatures as Means of Identifying Similarities among Microarray Experiments 
PLoS ONE  2009;4(1):e4128.
Widespread use of microarrays has generated large amounts of data, the interrogation of the public microarray repositories, identifying similarities between microarray experiments is now one of the major challenges. Approaches using defined group of genes, such as pathways and cellular networks (pathway analysis), have been proposed to improve the interpretation of microarray experiments. We propose a novel method to compare microarray experiments at the pathway level, this method consists of two steps: first, generate pathway signatures, a set of descriptors recapitulating the biologically meaningful pathways related to some clinical/biological variable of interest, second, use these signatures to interrogate microarray databases. We demonstrate that our approach provides more reliable results than with gene-based approaches. While gene-based approaches tend to suffer from bias generated by the analytical procedures employed, our pathway based method successfully groups together similar samples, independently of the experimental design. The results presented are potentially of great interest to improve the ability to query and compare experiments in public repositories of microarray data. As a matter of fact, this method can be used to retrieve data from public microarray databases and perform comparisons at the pathway level.
doi:10.1371/journal.pone.0004128
PMCID: PMC2610483  PMID: 19125200

Results 1-2 (2)