PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Modeling coincidence detection in nucleus laminaris 
Biological Cybernetics  2003;89(5):388-396.
A biologically detailed model of the binaural avian nucleus laminaris is constructed, as a two-dimensional array of multicompartment, conductance-based neurons, along tonotopic and interaural time delay (ITD) axes. The model is based primarily on data from chick nucleus laminaris. Typical chick-like parameters perform ITD discrimination up to 2 kHz, and enhancements for barn owl perform ITD discrimination up to 6 kHz. The dendritic length gradient of NL is explained concisely. The response to binaural out-of-phase input is suppressed well below the response to monaural input (without any spontaneous activity on the opposite side), implicating active potassium channels as crucial to good ITD discrimination.
doi:10.1007/s00422-003-0444-4
PMCID: PMC3269635  PMID: 14669019
2.  Localization of KCNC1 (Kv3.1) Potassium Channel Subunits in the Avian Auditory Nucleus Magnocellularis and Nucleus Laminaris during Development 
Journal of Neurobiology  2003;55(2):165-178.
The KCNC1 (previously Kv3.1) potassium channel, a delayed rectifier with a high threshold of activation, is highly expressed in the time coding nuclei of the adult chicken and barn owl auditory brainstem. The proposed role of KCNC1 currents in auditory neurons is to reduce the width of the action potential and enable neurons to transmit high frequency temporal information with little jitter. Because developmental changes in potassium currents are critical for the maturation of the shape of the action potential, we used immunohistochemical methods to examine the developmental expression of KCNC1 subunits in the avian auditory brainstem. The KCNC1 gene gives rise to two splice variants, a longer KCNC1b and a shorter KCNC1a that differ at the carboxy termini. Two antibodies were used: an antibody to the N-terminus that does not distinguish between KCNC1a and b isoforms, denoted as panKCNC1, and another antibody that specifically recognizes the C terminus of KCNC1b. A comparison of the staining patterns observed with the pan-KCNC1 and the KCNC1b specific antibodies suggests that KCNC1a and KCNC1b splice variants are differentially regulated during development. Although pan-KCNC1 immunoreactivity is observed from the earliest time examined in the chicken (E10), a subcellular redistribution of the immunoproduct was apparent over the course of development. KCNC1b specific staining has a late onset with immunostaining first appearing in the regions that map high frequencies in nucleus magnocellularis (NM) and nucleus laminaris (NL). The expression of KCNC1b protein begins around E14 in the chicken and after E21 in the barn owl, relatively late during ontogeny and at the time that synaptic connections mature morphologically and functionally.
doi:10.1002/neu.10198
PMCID: PMC3268178  PMID: 12672015
chicken; barn owl; ontogeny; time coding; outward current; high threshold

Results 1-2 (2)