PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Computational Diversity in the Cochlear Nucleus Angularis of the Barn Owl 
Journal of Neurophysiology  2002;89(4):2313-2329.
The cochlear nucleus angularis (NA) is widely assumed to form the starting point of a brain stem pathway for processing sound intensity in birds. Details of its function are unclear, however, and its evolutionary origin and relationship to the mammalian cochlear-nucleus complex are obscure. We have carried out extracellular single-unit recordings in the NA of ketamine-anesthetized barn owls. The aim was to re-evaluate the extent of heterogeneity in NA physiology because recent studies of cellular morphology had established several distinct types. Extensive characterization, using tuning curves, phase locking, peristimulus time histograms and rate-level functions for pure tones and noise, revealed five major response types. The most common one was a primary-like pattern that was distinguished from auditory-nerve fibers by showing lower vector strengths of phase locking and/or lower spontaneous rates. Two types of chopper responses were found (chopper-transient and a rare chopper-sustained), as well as onset units. Finally, we routinely encountered a complex response type with a pronounced inhibitory component, similar to the mammalian typeIV. Evidence is presented that this range of response types is representative for birds and that earlier conflicting reports may be due to methodological differences. All five response types defined were similar to well-known types in the mammalian cochlear nucleus. This suggests convergent evolution of neurons specialized for encoding different behaviorally relevant features of the auditory stimulus. It remains to be investigated whether the different response types correlate with morphological types and whether they establish different processing streams in the auditory brain stem of birds.
doi:10.1152/jn.00635.2002
PMCID: PMC3259745  PMID: 12612008
2.  Maps of interaural time difference in the chicken’s brainstem nucleus laminaris 
Biological cybernetics  2008;98(6):541-559.
Animals, including humans, use interaural time differences (ITDs) that arise from different sound path lengths to the two ears as a cue of horizontal sound source location. The nature of the neural code for ITD is still controversial. Current models differentiate between two population codes: either a map-like rate-place code of ITD along an array of neurons, consistent with a large body of data in the barn owl, or a population rate code, consistent with data from small mammals. Recently, it was proposed that these different codes reflect optimal coding strategies that depend on head size and sound frequency. The chicken makes an excellent test case of this proposal because its physical pre-requisites are similar to small mammals, yet it shares a more recent common ancestry with the owl. We show here that, like in the barn owl, the brainstem nucleus laminaris in mature chickens displayed the major features of a place code of ITD. ITD was topographically represented in the maximal responses of neurons along each isofrequency band, covering approximately the contralateral acoustic hemisphere. Furthermore, the represented ITD range appeared to change with frequency, consistent with a pressure gradient receiver mechanism in the avian middle ear. At very low frequencies, below400 Hz, maximal neural responses were symmetrically distributed around zero ITD and it remained unclear whether there was a topographic representation. These findings do not agree with the above predictions for optimal coding and thus revive the discussion as to what determines the neural coding strategies for ITDs.
doi:10.1007/s00422-008-0220-6
PMCID: PMC3170859  PMID: 18491165
Auditory; Hearing; Sound localization; Sensory

Results 1-2 (2)