PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  The 2′-O-Ribose Methyltransferase for Cap 1 of Spliced Leader RNA and U1 Small Nuclear RNA in Trypanosoma brucei▿ †  
Molecular and Cellular Biology  2007;27(17):6084-6092.
mRNA cap 1 2′-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2′-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2′-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2′-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2′-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3′-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.
doi:10.1128/MCB.00647-07
PMCID: PMC1952150  PMID: 17606627
2.  Complete Cap 4 Formation Is Not Required for Viability in Trypanosoma brucei†  
Eukaryotic Cell  2006;5(6):905-915.
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5′ ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m7G cap, ribose 2′-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2′-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A2 and is not required for subsequent steps; TbMT511 methylates C3, without which U4 methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m7G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A2, C3, and U4 methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.
doi:10.1128/EC.00080-06
PMCID: PMC1489268  PMID: 16757738
3.  3′-End Polishing of the Kinetoplastid Spliced Leader RNA Is Performed by SNIP, a 3′→5′ Exonuclease with a Motley Assortment of Small RNA Substrates†  
Molecular and Cellular Biology  2004;24(23):10390-10396.
In all trypanosomatids, trans splicing of the spliced leader (SL) RNA is a required step in the maturation of all nucleus-derived mRNAs. The SL RNA is transcribed with an oligo-U 3′ extension that is removed prior to trans splicing. Here we report the identification and characterization of a nonexosomal, 3′→5′ exonuclease required for SL RNA 3′-end formation in Trypanosoma brucei. We named this enzyme SNIP (for snRNA incomplete 3′ processing). The central 158-amino-acid domain of SNIP is related to the exonuclease III (ExoIII) domain of the 3′→5′ proofreading ɛ subunit of Escherichia coli DNA polymerase III holoenzyme. SNIP had a preference for oligo(U) 3′ extensions in vitro. RNA interference-mediated knockdown of SNIP resulted in a growth defect and correlated with the accumulation of one- to two- nucleotide 3′ extensions of SL RNA, U2 and U4 snRNAs, a five-nucleotide extension of 5S rRNA, and the destabilization of U3 snoRNA and U2 snRNA. SNIP-green fluorescent protein localized to the nucleoplasm, and substrate SL RNA derived from SNIP knockdown cells showed wild-type cap 4 modification, indicating that SNIP acts on SL RNA after cytosolic trafficking. Since the primary SL RNA transcript was not the accumulating species in SNIP knockdown cells, SL RNA 3′-end formation is a multistep process in which SNIP provides the ultimate 3′-end polishing. We speculate that SNIP is part of an organized nucleoplasmic machinery responsible for processing of SL RNA.
doi:10.1128/MCB.24.23.10390-10396.2004
PMCID: PMC529039  PMID: 15542846
4.  SmD1 Is Required for Spliced Leader RNA Biogenesis 
Eukaryotic Cell  2004;3(1):241-244.
The Sm-binding site of the kinetoplastid spliced leader RNA has been implicated in accurate spliced leader RNA maturation and trans-splicing competence. In Trypanosoma brucei, RNA interference-mediated knockdown of SmD1 caused defects in spliced leader RNA maturation, displaying aberrant 3′-end formation, partial formation of cap 4, and overaccumulation in the cytoplasm; U28 pseudouridylation was unaffected.
doi:10.1128/EC.3.1.241-244.2004
PMCID: PMC329508  PMID: 14871954
5.  Exportin 1 Mediates Nuclear Export of the Kinetoplastid Spliced Leader RNA 
Eukaryotic Cell  2003;2(2):222-230.
The kinetoplastid protozoan spliced leader (SL) RNA is the common substrate pre-mRNA utilized in all trans-splicing reactions. Here we show by fluorescence in situ hybridization that the SL RNA is present in the cytoplasm of Leishmania tarentolae and Trypanosoma brucei. Treatment with the karyopherin-specific inhibitor leptomycin B was toxic to T. brucei and eliminated the cytoplasmic SL RNA, suggesting that cytoplasmic SL RNA was dependent on the nuclear exporter exportin 1 (XPO1). Ectopic expression of xpo1 with a C506S mutation in T. brucei conferred resistance to leptomycin B. A reduction in SL RNA 3′ extension removal and 5′ methylation of nucleotide U4 was observed in wild-type T. brucei treated with leptomycin B, suggesting that the cytoplasmic stage is necessary for SL RNA biogenesis. This study demonstrates spatial and mechanistic similarities between the posttranscriptional trafficking of the kinetoplastid protozoan SL RNA and the metazoan cis-spliceosomal small nuclear RNAs.
doi:10.1128/EC.2.2.222-230.2003
PMCID: PMC154853  PMID: 12684371

Results 1-5 (5)