PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast 
Science signaling  2010;3(153):rs4.
The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.
doi:10.1126/scisignal.2001182
PMCID: PMC3072779  PMID: 21177495
3.  PhosphoPep—a phosphoproteome resource for systems biology research in Drosophila Kc167 cells 
The ability to analyze and understand the mechanisms by which cells process information is a key question of systems biology research. Such mechanisms critically depend on reversible phosphorylation of cellular proteins, a process that is catalyzed by protein kinases and phosphatases. Here, we present PhosphoPep, a database containing more than 10 000 unique high-confidence phosphorylation sites mapping to nearly 3500 gene models and 4600 distinct phosphoproteins of the Drosophila melanogaster Kc167 cell line. This constitutes the most comprehensive phosphorylation map of any single source to date. To enhance the utility of PhosphoPep, we also provide an array of software tools that allow users to browse through phosphorylation sites on single proteins or pathways, to easily integrate the data with other, external data types such as protein–protein interactions and to search the database via spectral matching. Finally, all data can be readily exported, for example, for targeted proteomics approaches and the data thus generated can be again validated using PhosphoPep, supporting iterative cycles of experimentation and analysis that are typical for systems biology research.
doi:10.1038/msb4100182
PMCID: PMC2063582  PMID: 17940529
data integration; Drosophila; interactive database; phosphoproteomics; systems biology

Results 1-3 (3)