PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  PASSEL: The PeptideAtlas SRM Experiment Library 
Proteomics  2012;12(8):10.1002/pmic.201100515.
Public repositories for proteomics data have accelerated proteomics research by enabling more efficient cross-analyses of datasets, supporting the creation of protein and peptide compendia of experimental results, supporting the development and testing of new software tools, and facilitating the manuscript review process. The repositories available to date have been designed to accommodate either shotgun experiments or generic proteomic data files. Here, we describe a new kind of proteomic data repository for the collection and representation of data from selected reaction monitoring (SRM) measurements. The PeptideAtlas SRM Experiment Library (PASSEL) allows researchers to easily submit proteomic data sets generated by SRM. The raw data are automatically processed in a uniform manner and the results are stored in a database, where they may be downloaded or browsed via a web interface that includes a chromatogram viewer. PASSEL enables cross-analysis of SRM data, supports optimization of SRM data collection, and facilitates the review process of SRM data. Further, PASSEL will help in the assessment of proteotypic peptide performance in a wide array of samples containing the same peptide, as well as across multiple experimental protocols.
doi:10.1002/pmic.201100515
PMCID: PMC3832291  PMID: 22318887
data repository; MRM; software; SRM; targeted proteomics
2.  TraML—A Standard Format for Exchange of Selected Reaction Monitoring Transition Lists* 
Molecular & Cellular Proteomics : MCP  2011;11(4):R111.015040.
Targeted proteomics via selected reaction monitoring is a powerful mass spectrometric technique affording higher dynamic range, increased specificity and lower limits of detection than other shotgun mass spectrometry methods when applied to proteome analyses. However, it involves selective measurement of predetermined analytes, which requires more preparation in the form of selecting appropriate signatures for the proteins and peptides that are to be targeted. There is a growing number of software programs and resources for selecting optimal transitions and the instrument settings used for the detection and quantification of the targeted peptides, but the exchange of this information is hindered by a lack of a standard format. We have developed a new standardized format, called TraML, for encoding transition lists and associated metadata. In addition to introducing the TraML format, we demonstrate several implementations across the community, and provide semantic validators, extensive documentation, and multiple example instances to demonstrate correctly written documents. Widespread use of TraML will facilitate the exchange of transitions, reduce time spent handling incompatible list formats, increase the reusability of previously optimized transitions, and thus accelerate the widespread adoption of targeted proteomics via selected reaction monitoring.
doi:10.1074/mcp.R111.015040
PMCID: PMC3322582  PMID: 22159873
3.  Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast 
Science signaling  2010;3(153):rs4.
The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules, and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery, and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.
doi:10.1126/scisignal.2001182
PMCID: PMC3072779  PMID: 21177495
4.  Differential Plasma Glycoproteome of p19ARF Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform 
Clinical proteomics  2008;4(3-4):105.
A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort.
doi:10.1007/s12014-008-9018-8
PMCID: PMC2821048  PMID: 20157627
Skin cancer; LC-MS; Label-free protein quantification; Biomarker discovery; Systems biology; Targeted peptide sequencing; Glycoproteomics; Plasma
5.  Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics 
BMC Bioinformatics  2008;9:542.
Background
Quantitative proteomics holds great promise for identifying proteins that are differentially abundant between populations representing different physiological or disease states. A range of computational tools is now available for both isotopically labeled and label-free liquid chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are generally not comparable to each other in terms of functionality, user interfaces, information input/output, and do not readily facilitate appropriate statistical data analysis. These limitations, along with the array of choices, present a daunting prospect for biologists, and other researchers not trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics.
Results
We have developed Corra, a computational framework and tools for discovery-based LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based proteomics, and statistical algorithms, originally developed for microarray data analyses, appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g. Google Web Toolkit, distributed processing) so that computationally intense data processing and statistical analyses can run on a remote server, while the user controls and manages the process from their own computer via a simple web interface. Corra also allows the user to output significantly differentially abundant LC-MS-detected peptide features in a form compatible with subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case studies to illustrate the application of Corra to commonly performed LC-MS-based biological workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1 via phosphopeptide profiling.
Conclusion
The Corra computational framework leverages computational innovation to enable biologists or other researchers to process, analyze and visualize LC-MS data with what would otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted identification of differentially abundant peptides by MS/MS. For the user not trained in bioinformatics, Corra represents a complete, customizable, free and open source computational platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the LC-MS proteomics field.
doi:10.1186/1471-2105-9-542
PMCID: PMC2651178  PMID: 19087345

Results 1-5 (5)