PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Improved Doubly Robust Estimation when Data are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout 
Biometrics  2010;67(2):536-545.
Summary
A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial.
doi:10.1111/j.1541-0420.2010.01476.x
PMCID: PMC3061242  PMID: 20731640
Coarsening at random; Discrete hazard; Dropout; Longitudinal data; Missing at random

Results 1-1 (1)