Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
Year of Publication
1.  Upregulation of Immunoproteasome Subunits in Myositis Indicates Active Inflammation with Involvement of Antigen Presenting Cells, CD8 T-Cells and IFNγ 
PLoS ONE  2014;9(8):e104048.
In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers.
Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses.
Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood.
Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition.
PMCID: PMC4123911  PMID: 25098831
3.  SiPaGene: A new repository for instant online retrieval, sharing and meta-analyses of GeneChip® expression data 
BMC Genomics  2009;10:98.
Microarray expression profiling is becoming a routine technology for medical research and generates enormous amounts of data. However, reanalysis of public data and comparison with own results is laborious. Although many different tools exist, there is a need for more convenience and online analysis with restriction of access and user specific sharing options. Furthermore, most of the currently existing tools do not use the whole range of statistical power provided by the MAS5.0/GCOS algorithms.
With a current focus on immunology, infection, inflammation, tissue regeneration and cancer we developed a database platform that can load preprocessed Affymetrix GeneChip expression data for immediate access. Group or subgroup comparisons can be calculated online, retrieved for candidate genes, transcriptional activity in various biological conditions and compared with different experiments. The system is based on Oracle 9i with algorithms in java and graphical user interfaces implemented as java servlets. Signals, detection calls, signal log ratios, change calls and corresponding p-values were calculated with MAS5.0/GCOS algorithms. MIAME information and gene annotations are provided via links to GEO and EntrezGene. Users access via https protocol their own, shared or public data. Sharing is comparison- and user-specific with different levels of rights. Arrays for group comparisons can be selected individually. Twenty-two different group comparison parameters can be applied in user-defined combinations on single or multiple group comparisons. Identified genes can be reviewed online or downloaded. Optimized selection criteria were developed and reliability was demonstrated with the "Latin Square" data set. Currently more than 1,000 arrays, 10,000 pairwise comparisons and 500 group comparisons are presented with public or restricted access by different research networks or individual users.
SiPaGene is a repository and a high quality tool for primary analysis of GeneChips. It exploits the MAS5.0/GCOS pairwise comparison algorithm, enables restricted access and user specific sharing. It does not aim for a complete representation of all public arrays but for high quality analysis with stepwise integration of reference signatures for detailed meta-analyses. Development of additional tools like functional annotation networks based on expression information will be future steps towards a systematic biological analysis of expression profiles.
PMCID: PMC2657156  PMID: 19265543
4.  Autoregulation of Th1-mediated inflammation by twist1 
The Journal of Experimental Medicine  2008;205(8):1889-1901.
The basic helix-loop-helix transcriptional repressor twist1, as an antagonist of nuclear factor κB (NF-κB)–dependent cytokine expression, is involved in the regulation of inflammation-induced immunopathology. We show that twist1 is expressed by activated T helper (Th) 1 effector memory (EM) cells. Induction of twist1 in Th cells depended on NF-κB, nuclear factor of activated T cells (NFAT), and interleukin (IL)-12 signaling via signal transducer and activator of transcription (STAT) 4. Expression of twist1 was transient after T cell receptor engagement, and increased upon repeated stimulation of Th1 cells. Imprinting for enhanced twist1 expression was characteristic of repeatedly restimulated EM Th cells, and thus of the pathogenic memory Th cells characteristic of chronic inflammation. Th lymphocytes from the inflamed joint or gut tissue of patients with rheumatic diseases, Crohn's disease or ulcerative colitis expressed high levels of twist1. Expression of twist1 in Th1 lymphocytes limited the expression of the cytokines interferon-γ, IL-2, and tumor necrosis factor-α, and ameliorated Th1-mediated immunopathology in delayed-type hypersensitivity and antigen-induced arthritis.
PMCID: PMC2525589  PMID: 18663125
5.  Decrease in expression of bone morphogenetic proteins 4 and 5 in synovial tissue of patients with osteoarthritis and rheumatoid arthritis 
Bone morphogenetic proteins (BMPs) have been identified as important morphogens with pleiotropic functions in regulating the development, homeostasis and repair of various tissues. The aim of this study was to characterize the expression of BMPs in synovial tissues under normal and arthritic conditions. Synovial tissue from normal donors (ND) and from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) were analyzed for BMP expression by using microarray hybridization. Differential expression of BMP-4 and BMP-5 was validated by semiquantitative RT-PCR, in situ hybridization and immunohistochemistry. Activity of arthritis was determined by routine parameters for systemic inflammation, by histological scoring of synovitis and by semiquantitative RT-PCR of IL-1β, TNF-α, stromelysin and collagenase I in synovial tissue. Expression of BMP-4 and BMP-5 mRNA was found to be significantly decreased in synovial tissue of patients with RA in comparison with ND by microarray analysis (p < 0.0083 and p < 0.0091). Validation by PCR confirmed these data in RA (p < 0.002) and also revealed a significant decrease in BMP-4 and BMP-5 expression in OA compared with ND (p < 0.015). Furthermore, histomorphological distribution of both morphogens as determined by in situ hybridization and immunohistochemistry showed a dominance in the lining layer of normal tissues, whereas chronically inflamed tissue from patients with RA revealed BMP expression mainly scattered across deeper layers. In OA, these changes were less pronounced with variable distribution of BMPs in the lining and sublining layer. BMP-4 and BMP-5 are expressed in normal synovial tissue and were found decreased in OA and RA. This may suggest a role of distinct BMPs in joint homeostasis that is disturbed in inflammatory and degenerative joint diseases. In comparison with previous reports, these data underline the complex impact of these factors on homeostasis and remodeling in joint physiology and pathology.
PMCID: PMC1526630  PMID: 16542506
6.  Detailed analysis of the variability of peptidylarginine deiminase type 4 in German patients with rheumatoid arthritis: a case–control study 
Peptidylarginine deiminase type 4 (PADI4) genotypes were shown to influence susceptibility to rheumatoid arthritis (RA) in the Japanese population. Such an association could not previously be confirmed in different European populations. In the present study, we analysed exons 2–4 of PADI4 in 102 German RA patients and 102 healthy individuals to study the influence of PADI4 variability on RA susceptibility by means of haplotype-specific DNA sequencing. Analyses of the influence of PADI4 and HLA-DRB1 genotypes on disease activity and on levels of anti-cyclic citrullinated peptide antibodies were performed.
Comparing the frequencies of PADI4 haplotype 4 (padi4_89*G, padi4_90*T, padi4_92*G, padi4_94*T, padi4_104*C, padi4_95*G, padi4_96*T) (patients, 14.7%; controls, 7.8%; odds ratio = 2.0, 95% confidence interval = 1.1–3.8) and carriers of this haplotype (patients, 27.5%; controls, 13.7%; odds ratio = 2.4, 95% confidence interval = 1.2–4.8), a significant positive association of PADI4 haplotype 4 with RA could be demonstrated. Other PADI4 haplotypes did not differ significantly between patients and controls. Regarding the individual PADI4 variants, padi4_89 (A→G), padi4_90 (C→T), and padi4_94 (C→T) were significantly associated with RA (patients, 49.5%; controls, 38.7%; odds ratio = 1.6, 95% confidence interval = 1.1–2.3). Considering novel PADI4 variants located in or near to exons 2, 3, and 4, no quantitative or qualitative differences between RA patients (8.8%) and healthy controls (10.8%) could be demonstrated. While the PADI4 genotype did not influence disease activity and the anti-cyclic citrullinated peptide antibody level, the presence of the HLA-DRB1 shared epitope was significantly associated with higher anti-cyclic citrullinated peptide antibody levels (P = 0.033).
The results of this small case–control study support the hypothesis that variability of the PADI4 gene may influence susceptibility to RA in the German population. Quantitative or qualitative differences in previously undefined PADI4 variants between patients and controls could not be demonstrated.
PMCID: PMC1526594  PMID: 16469113
7.  Perspectives and limitations of gene expression profiling in rheumatology: new molecular strategies 
Arthritis Research & Therapy  2004;6(4):140-146.
The deciphering of the sequence of the human genome has raised the expectation of unravelling the specific role of each gene in physiology and pathology. High-throughput technologies for gene expression profiling provide the first practical basis for applying this information. In rheumatology, with its many diseases of unknown pathogenesis and puzzling inflammatory aspects, these advances appear to promise a significant advance towards the identification of leading mechanisms of pathology. Expression patterns reflect the complexity of the molecular processes and are expected to provide the molecular basis for specific diagnosis, therapeutic stratification, long-term monitoring and prognostic evaluation. Identification of the molecular networks will help in the discovery of appropriate drug targets, and permit focusing on the most effective and least toxic compounds. Current limitations in screening technologies, experimental strategies and bioinformatic interpretation will shortly be overcome by the rapid development in this field. However, gene expression profiling, by its nature, will not provide biochemical information on functional activities of proteins and might only in part reflect underlying genetic dysfunction. Genomic and proteomic technologies will therefore be complementary in their scientific and clinical application.
PMCID: PMC464885  PMID: 15225356
expression profiling; genomics; molecular strategies; pathway models; signatures
8.  Autologous stem-cell transplantation in refractory autoimmune diseases after in vivo immunoablation and ex vivo depletion of mononuclear cells 
Arthritis Research  2000;2(4):327-336.
Autoimmune diseases that are resistant to conventional treatment cause severe morbidity and even mortality. In the present study we demonstrate that complete remissions can be achieved in refractory polychondritis and systemic lupus erythematosus (SLE), even at advanced stage, with the use of autologous stem-cell transplantation (SCT). Remissions persisted after reconstitution of the immune system. In the treatment of advanced systemic sclerosis (SSc), stable disease may be achieved with autologous SCT.
Patients with persistently active autoimmune diseases are considered to be candidates for autologous SCT. We performed a phase 1/2 study in a limited number of patients who were refractory to conventional immunosuppressive treatment. Following a period of uncontrolled disease activity for at least 6 months, autologous SCT was performed, after in vivo immunoablation and ex vivo depletion of mononuclear cells.
To investigate feasibility, toxicity and efficacy of the treatment, and the incidence of emergent infections.
Seven patients (aged between 23 and 48 years) were included in the single-centre trial: one had relapsing polychondritis, three had treatment-refractory SLE and three patients had SSc. Stem-cell mobilization was achieved by treatment with moderate-dose cyclophosphamide (2 g/m2; in terms of myelotoxic side effects or myelosuppression) and granulocyte colony-stimulating factor (G-CSF). CD34- cells of the leukapheresis products were removed by high-gradient magnetic cell sorting. After stem-cell collection, immunoablation was performed with high-dose cyclophosphamide (200 mg/kg body weight) and antithymocyte globulin (ATG; 90 mg/kg body weight). Autologous SCT was followed by reconstitution of the immune system, which was monitored by six-parameter flow cytometry and standard serology. The trial fulfilled the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT) guidelines for blood and bone marrow stem-cell transplants in autoimmune disease.
Among the seven patients studied, the patient with relapsing polychondritis and the patients with SLE were successfully treated and remained in complete remission during a follow up of 10-21 months. Remission persisted despite reconstitution of the immune system, resulting in high numbers of effector-/memory-type T-helper lymphocytes and increasing populations in the naïve T-cell compartment. Before autologous SCT, one of the patients with SLE had a long-lasting secondary antiphospholipid syndrome, with high anticardiolipin antibodies and thromboembolic events. After autologous SCT the antiphospholipid antibodies became negative, and no thrombosis occurred during follow up. Two of the patients with SSc were unaffected by treatment with autologous SCT for 6 or 13 months. The other patient with SSc died 2 days after autologous SCT because of cardiac failure.
During stem-cell mobilization with G-CSF, flares of autoimmune disease were seen in the patient with polychondritis and in one patient with SLE. The strategy utilized for depletion of CD34- cells led to a reduction by 4.5-5 log of contaminating CD3+ cells in the transplant. T-cell add-back was required in the patient with polychondritis and in one patient with SLE to provide a dose of 1×104 CD3+ cells/kg body weight for the transplant.
In vivo immunoablation in combination with autologous SCT after ex vivo depletion of CD34- cells can block the autoimmune process in relapsing polychondritis or SLE without incidence of severe infections. The remissions were achieved in patients with advanced disease that was refractory to previous intensive immunosuppressive therapy. The present results do not indicate that large-scale contamination of the stem-cell transplant with autoreactive cells after selection for CD34+cells occurred. After the preparative regimen, the application of G-CSF was avoided, because induction of flares of the autoimmune disease were noticed during the mobilization of stem cells. In SSc patients, distinct remissions were not observable after autologous SCT; the serological and clinical status did not improve. Follow-up periods of more than 12 months may be required to identify successful treatment with autologous SCT in SSc patients. Among the various autoimmune diseases the efficacy of autologous SCT appears to be dependent on the underlying pathophysiology. The results of the present phase 1/2 study suggest that patients with advanced stage SSc should not be treated with autologous SCT, until the reasons for the lack of response and the possible mortality due to cardiac complications are identified. The observation of flares of autoimmune disease after application of G-CSF emphasizes the need for critical evaluation of the role of G-CSF in immunoablative regimens.
PMCID: PMC17815  PMID: 11056673
autologous stem-cell transplantation; polychondritis; refractory autoimmune disease; systemic lupus erythematosus; systemic sclerosis

Results 1-9 (9)