PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily 
Nucleic Acids Research  2004;32(20):6129-6135.
The restriction endonuclease (REase) R.KpnI is an orthodox Type IIP enzyme, which binds to DNA in the absence of metal ions and cleaves the DNA sequence 5′-GGTAC^C-3′ in the presence of Mg2+ as shown generating 3′ four base overhangs. Bioinformatics analysis reveals that R.KpnI contains a ββα-Me-finger fold, which is characteristic of many HNH-superfamily endonucleases, including homing endonuclease I-HmuI, structure-specific T4 endonuclease VII, colicin E9, sequence non-specific Serratia nuclease and sequence-specific homing endonuclease I-PpoI. According to our homology model of R.KpnI, D148, H149 and Q175 correspond to the critical D, H and N or H residues of the HNH nucleases. Substitutions of these three conserved residues lead to the loss of the DNA cleavage activity by R.KpnI, confirming their importance. The mutant Q175E fails to bind DNA at the standard conditions, although the DNA binding and cleavage can be rescued at pH 6.0, indicating a role for Q175 in DNA binding and cleavage. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD…D/EXK superfamily of nucleases, instead is a member of the HNH superfamily.
doi:10.1093/nar/gkh951
PMCID: PMC534630  PMID: 15562004
2.  COLORADO3D, a web server for the visual analysis of protein structures 
Nucleic Acids Research  2004;32(Web Server issue):W586-W589.
COLORADO3D is a World Wide Web server for the visual presentation of three-dimensional (3D) protein structures. COLORADO3D indicates the presence of potential errors (detected by ANOLEA, PROSAII, PROVE or VERIFY3D), identifies buried residues and depicts sequence conservations. As input, the server takes a file of Protein Data Bank (PDB) coordinates and, optionally, a multiple sequence alignment. As output, the server returns a PDB-formatted file, replacing the B-factor column with values of the chosen parameter (structure quality, residue burial or conservation). Thus, the coordinates of the analyzed protein ‘colored’ by COLORADO3D can be conveniently displayed with structure viewers such as RASMOL in order to visualize the 3D clusters of regions with common features, which may not necessarily be adjacent to each other at the amino acid sequence level. In particular, COLORADO3D may serve as a tool to judge a structure's quality at various stages of the modeling and refinement (during both experimental structure determination and homology modeling). The GeneSilico group used COLORADO3D in the fifth Critical Assessment of Techniques for Protein Structure Prediction (CASP5) to successfully identify well-folded parts of preliminary homology models and to guide the refinement of misthreaded protein sequences. COLORADO3D is freely available for academic use at http://asia.genesilico.pl/colorado3d/.
doi:10.1093/nar/gkh440
PMCID: PMC441578  PMID: 15215456
3.  Sequence–structure–function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases 
Nucleic Acids Research  2004;32(8):2453-2463.
Three types of methyltransferases (MTases) generate 5-methylpyrimidine in nucleic acids, forming m5U in RNA, m5C in RNA and m5C in DNA. The DNA:m5C MTases have been extensively studied by crystallographic, biophysical, biochemical and computational methods. On the other hand, the sequence–structure–function relationships of RNA:m5C MTases remain obscure, as do the potential evolutionary relationships between the three types of 5-methylpyrimidine-generating enzymes. Sequence analyses and homology modeling of the yeast tRNA:m5C MTase Trm4p (also called Ncl1p) provided a structural and evolutionary platform for identification of catalytic residues and modeling of the architecture of the RNA:m5C MTase active site. The analysis led to the identification of two invariant residues that are important for Trm4p activity in addition to the conserved Cys residues in motif IV and motif VI that were previously found to be critical. The newly identified residues include a Lys residue in motif I and an Asp in motif IV. A conserved Gln found in motif X was found to be dispensable for MTase activity. Locations of essential residues in the model of Trm4p are in very good agreement with the X-ray structure of an RNA:m5C MTase homolog PH1374. Theoretical and experimental analyses revealed that RNA:m5C MTases share a number of features with either RNA:m5U MTases or DNA:m5C MTases, which suggested a tentative phylogenetic model of relationships between these three classes of 5-methylpyrimidine MTases. We infer that RNA:m5C MTases evolved from RNA:m5U MTases by acquiring an additional Cys residue in motif IV, which was adapted to function as the nucleophilic catalyst only later in DNA:m5C MTases, accompanied by loss of the original Cys from motif VI, transfer of a conserved carboxylate from motif IV to motif VI and sequence permutation.
doi:10.1093/nar/gkh564
PMCID: PMC419452  PMID: 15121902
4.  A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase 
Nucleic Acids Research  2004;32(2):465-476.
The modified nucleoside 1-methyladenosine (m1A) is found in the T-loop of many tRNAs from organisms belonging to the three domains of life (Eukaryota, Bacteria, Archaea). In the T-loop of eukaryotic and bacterial tRNAs, m1A is present at position 58, whereas in archaeal tRNAs it is present at position(s) 58 and/or 57, m1A57 being the obligatory intermediate in the biosynthesis of 1-methylinosine (m1I57). In yeast, the formation of m1A58 is catalysed by the essential tRNA (m1A58) methyltransferase (MTase), a tetrameric enzyme that is composed of two types of subunits (Gcd14p and Gcd10p), whereas in the bacterium Thermus thermophilus the enzyme is a homotetramer of the TrmI polypeptide. Here, we report that the TrmI enzyme from the archaeon Pyrococcus abyssi is also a homotetramer. However, unlike the bacterial site-specific TrmI MTase, the P.abyssi enzyme is region-specific and catalyses the formation of m1A at two adjacent positions (57 and 58) in the T-loop of certain tRNAs. The stabilisation of P.abyssi TrmI at extreme temperatures involves intersubunit disulphide bridges that reinforce the tetrameric oligomerisation, as revealed by biochemical and crystallographic evidences. The origin and evolution of m1A MTases is discussed in the context of different hypotheses of the tree of life.
doi:10.1093/nar/gkh191
PMCID: PMC373318  PMID: 14739239

Results 1-4 (4)