Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Structural model for the multisubunit Type IC restriction–modification DNA methyltransferase M.EcoR124I in complex with DNA 
Nucleic Acids Research  2006;34(7):1992-2005.
Recent publication of crystal structures for the putative DNA-binding subunits (HsdS) of the functionally uncharacterized Type I restriction–modification (R-M) enzymes MjaXIP and MgeORF438 have provided a convenient structural template for analysis of the more extensively characterized members of this interesting family of multisubunit molecular motors. Here, we present a structural model of the Type IC M.EcoR124I DNA methyltransferase (MTase), comprising the HsdS subunit, two HsdM subunits, the cofactor AdoMet and the substrate DNA molecule. The structure was obtained by docking models of individual subunits generated by fold-recognition and comparative modelling, followed by optimization of inter-subunit contacts by energy minimization. The model of M.EcoR124I has allowed identification of a number of functionally important residues that appear to be involved in DNA-binding. In addition, we have mapped onto the model the location of several new mutations of the hsdS gene of M.EcoR124I that were produced by misincorporation mutagenesis within the central conserved region of hsdS, we have mapped all previously identified DNA-binding mutants of TRD2 and produced a detailed analysis of the location of surface-modifiable lysines. The model structure, together with location of the mutant residues, provides a better background on which to study protein–protein and protein–DNA interactions in Type I R-M systems.
PMCID: PMC1435980  PMID: 16614449
2.  Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis 
Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA) biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM) domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM). However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin.
Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase) fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain.
The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily), but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.
PMCID: PMC1397878  PMID: 16433904

Results 1-2 (2)