PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (68)
 

Clipboard (0)
None
Journals
more »
Year of Publication
more »
Document Types
1.  Rational engineering of sequence specificity in R.MwoI restriction endonuclease 
Nucleic Acids Research  2012;40(17):8579-8592.
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5′-GCNNNNNNNGC-3′ (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5′-GCCNNNNNGGC-3′. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5′-GCCNNNNNGGC-3′ sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure.
doi:10.1093/nar/gks570
PMCID: PMC3458533  PMID: 22735699
2.  Databases and Bioinformatics Tools for the Study of DNA Repair 
DNA is continuously exposed to many different damaging agents such as environmental chemicals, UV light, ionizing radiation, and reactive cellular metabolites. DNA lesions can result in different phenotypical consequences ranging from a number of diseases, including cancer, to cellular malfunction, cell death, or aging. To counteract the deleterious effects of DNA damage, cells have developed various repair systems, including biochemical pathways responsible for the removal of single-strand lesions such as base excision repair (BER) and nucleotide excision repair (NER) or specialized polymerases temporarily taking over lesion-arrested DNA polymerases during the S phase in translesion synthesis (TLS). There are also other mechanisms of DNA repair such as homologous recombination repair (HRR), nonhomologous end-joining repair (NHEJ), or DNA damage response system (DDR). This paper reviews bioinformatics resources specialized in disseminating information about DNA repair pathways, proteins involved in repair mechanisms, damaging agents, and DNA lesions.
doi:10.4061/2011/475718
PMCID: PMC3200286  PMID: 22091405
3.  RNA Bricks—a database of RNA 3D motifs and their interactions 
Nucleic Acids Research  2013;42(D1):D123-D131.
The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions.
doi:10.1093/nar/gkt1084
PMCID: PMC3965019  PMID: 24220091
4.  Crohn's Disease Risk Alleles on the NOD2 Locus Have Been Maintained by Natural Selection on Standing Variation 
Molecular Biology and Evolution  2012;29(6):1569-1585.
Risk alleles for complex diseases are widely spread throughout human populations. However, little is known about the geographic distribution and frequencies of risk alleles, which may contribute to differences in disease susceptibility and prevalence among populations. Here, we focus on Crohn's disease (CD) as a model for the evolutionary study of complex disease alleles. Recent genome-wide association studies and classical linkage analyses have identified more than 70 susceptible genomic regions for CD in Europeans, but only a few have been confirmed in non-European populations. Our analysis of eight European-specific susceptibility genes using HapMap data shows that at the NOD2 locus the CD-risk alleles are linked with a haplotype specific to CEU at a frequency that is significantly higher compared with the entire genome. We subsequently examined nine global populations and found that the CD-risk alleles spread through hitchhiking with a high-frequency haplotype (H1) exclusive to Europeans. To examine the neutrality of NOD2, we performed phylogenetic network analyses, coalescent simulation, protein structural prediction, characterization of mutation patterns, and estimations of population growth and time to most recent common ancestor (TMRCA). We found that while H1 was significantly prevalent in European populations, the H1 TMRCA predated human migration out of Africa. H1 is likely to have undergone negative selection because 1) the root of H1 genealogy is defined by a preexisting amino acid substitution that causes serious conformational changes to the NOD2 protein, 2) the haplotype has almost become extinct in Africa, and 3) the haplotype has not been affected by the recent European expansion reflected in the other haplotypes. Nevertheless, H1 has survived in European populations, suggesting that the haplotype is advantageous to this group. We propose that several CD-risk alleles, which destabilize and disrupt the NOD2 protein, have been maintained by natural selection on standing variation because the deleterious haplotype of NOD2 is advantageous in diploid individuals due to heterozygote advantage and/or intergenic interactions.
doi:10.1093/molbev/mss006
PMCID: PMC3697811  PMID: 22319155
Crohn's disease; NOD2; hitchhiking effect; natural selection; standing variation; mildly deleterious mutation
5.  QA-RecombineIt: a server for quality assessment and recombination of protein models 
Nucleic Acids Research  2013;41(Web Server issue):W389-W397.
QA-RecombineIt provides a web interface to assess the quality of protein 3D structure models and to improve the accuracy of models by merging fragments of multiple input models. QA-RecombineIt has been developed for protein modelers who are working on difficult problems, have a set of different homology models and/or de novo models (from methods such as I-TASSER or ROSETTA) and would like to obtain one consensus model that incorporates the best parts into one structure that is internally coherent. An advanced mode is also available, in which one can modify the operation of the fragment recombination algorithm by manually identifying individual fragments or entire models to recombine. Our method produces up to 100 models that are expected to be on the average more accurate than the starting models. Therefore, our server may be useful for crystallographic protein structure determination, where protein models are used for Molecular Replacement to solve the phase problem. To address the latter possibility, a special feature was added to the QA-RecombineIt server. The QA-RecombineIt server can be freely accessed at http://iimcb.genesilico.pl/qarecombineit/.
doi:10.1093/nar/gkt408
PMCID: PMC3692112  PMID: 23700309
6.  RNAlyzer—novel approach for quality analysis of RNA structural models 
Nucleic Acids Research  2013;41(12):5978-5990.
The continuously increasing amount of RNA sequence and experimentally determined 3D structure data drives the development of computational methods supporting exploration of these data. Contemporary functional analysis of RNA molecules, such as ribozymes or riboswitches, covers various issues, among which tertiary structure modeling becomes more and more important. A growing number of tools to model and predict RNA structure calls for an evaluation of these tools and the quality of outcomes their produce. Thus, the development of reliable methods designed to meet this need is relevant in the context of RNA tertiary structure analysis and can highly influence the quality and usefulness of RNA tertiary structure prediction in the nearest future. Here, we present RNAlyzer—a computational method for comparison of RNA 3D models with the reference structure and for discrimination between the correct and incorrect models. Our approach is based on the idea of local neighborhood, defined as a set of atoms included in the sphere centered around a user-defined atom. A unique feature of the RNAlyzer is the simultaneous visualization of the model-reference structure distance at different levels of detail, from the individual residues to the entire molecules.
doi:10.1093/nar/gkt318
PMCID: PMC3695499  PMID: 23620294
7.  CompaRNA: a server for continuous benchmarking of automated methods for RNA secondary structure prediction 
Nucleic Acids Research  2013;41(7):4307-4323.
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks.
doi:10.1093/nar/gkt101
PMCID: PMC3627593  PMID: 23435231
8.  Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid 
Nucleic Acids Research  2013;41(6):3874-3887.
A key step in proliferation of retroviruses is the conversion of their RNA genome to double-stranded DNA, a process catalysed by multifunctional reverse transcriptases (RTs). Dimeric and monomeric RTs have been described, the latter exemplified by the enzyme of Moloney murine leukaemia virus. However, structural information is lacking that describes the substrate binding mechanism for a monomeric RT. We report here the first crystal structure of a complex between an RNA/DNA hybrid substrate and polymerase-connection fragment of the single-subunit RT from xenotropic murine leukaemia virus-related virus, a close relative of Moloney murine leukaemia virus. A comparison with p66/p51 human immunodeficiency virus-1 RT shows that substrate binding around the polymerase active site is conserved but differs in the thumb and connection subdomains. Small-angle X-ray scattering was used to model full-length xenotropic murine leukaemia virus-related virus RT, demonstrating that its mobile RNase H domain becomes ordered in the presence of a substrate—a key difference between monomeric and dimeric RTs.
doi:10.1093/nar/gkt053
PMCID: PMC3616737  PMID: 23382176
9.  RNApathwaysDB—a database of RNA maturation and decay pathways 
Nucleic Acids Research  2012;41(D1):D268-D272.
Many RNA molecules undergo complex maturation, involving e.g. excision from primary transcripts, removal of introns, post-transcriptional modification and polyadenylation. The level of mature, functional RNAs in the cell is controlled not only by the synthesis and maturation but also by degradation, which proceeds via many different routes. The systematization of data about RNA metabolic pathways and enzymes taking part in RNA maturation and degradation is essential for the full understanding of these processes. RNApathwaysDB, available online at http://iimcb.genesilico.pl/rnapathwaysdb, is an online resource about maturation and decay pathways involving RNA as the substrate. The current release presents information about reactions and enzymes that take part in the maturation and degradation of tRNA, rRNA and mRNA, and describes pathways in three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. RNApathwaysDB can be queried with keywords, and sequences of protein enzymes involved in RNA processing can be searched with BLAST. Options for data presentation include pathway graphs and tables with enzymes and literature data. Structures of macromolecular complexes involving RNA and proteins that act on it are presented as ‘potato models’ using DrawBioPath—a new javascript tool.
doi:10.1093/nar/gks1052
PMCID: PMC3531052  PMID: 23155061
10.  MODOMICS: a database of RNA modification pathways—2013 update 
Nucleic Acids Research  2012;41(D1):D262-D267.
MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A number of newly identified modified ribonucleosides and more than one hundred functionally and structurally characterized proteins from various organisms have been added. In the RNA sequences section, snRNAs and snoRNAs with experimentally mapped modified nucleosides have been added and the current collection of rRNA and tRNA sequences has been substantially enlarged. To facilitate literature searches, each record in MODOMICS has been cross-referenced to other databases and to selected key publications. New options for database searching and querying have been implemented, including a BLAST search of protein sequences and a PARALIGN search of the collected nucleic acid sequences.
doi:10.1093/nar/gks1007
PMCID: PMC3531130  PMID: 23118484
11.  Sequence-specific cleavage of the RNA strand in DNA–RNA hybrids by the fusion of ribonuclease H with a zinc finger 
Nucleic Acids Research  2012;40(22):11563-11570.
Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA–RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA–RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA–RNA hybrids. The optimization of the fusion enzyme’s specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation.
doi:10.1093/nar/gks885
PMCID: PMC3526281  PMID: 23042681
12.  Intrinsic Disorder in the Human Spliceosomal Proteome 
PLoS Computational Biology  2012;8(8):e1002641.
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Author Summary
In eukaryotic cells, introns are spliced out of proteincoding mRNAs by a highly dynamic and extraordinarily plastic molecular machine called the spliceosome. In recent years, multiple regions of intrinsic structural disorder were found in spliceosomal proteins. Intrinsically disordered regions lack stable native three-dimensional structure in solutions, which makes them structurally flexible and/or able to switch between different conformations. Hence, intrinsically disordered regions are the ideal candidate responsible for the spliceosome's plasticity. Intrinsically disordered regions are also frequently the sites of post-translational modifications, which were also proven to be important in spliceosome dynamics. In this article, we describe the results of a structural bioinformatics analysis focused on intrinsic disorder in the spliceosomal proteome. We systematically analyzed all known human spliceosomal proteins with regards to the presence and type of intrinsic disorder. Almost a half of the combined sequence of these spliceosomal proteins is predicted to be intrinsically disordered, and the type of intrinsic disorder in a protein varies with its function and its location in the spliceosome. The parts of the spliceosome that act earlier in the process are more disordered, which corresponds to their role in establishing a network of interactions, while the parts that act later are more ordered.
doi:10.1371/journal.pcbi.1002641
PMCID: PMC3415423  PMID: 22912569
13.  Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII 
Nucleic Acids Research  2012;40(16):8163-8174.
Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII.
doi:10.1093/nar/gks547
PMCID: PMC3439923  PMID: 22718974
14.  Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI 
Nucleic Acids Research  2012;40(15):7563-7572.
DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N6-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.
doi:10.1093/nar/gks428
PMCID: PMC3424567  PMID: 22610857
15.  Structural bioinformatics of the human spliceosomal proteome 
Nucleic Acids Research  2012;40(15):7046-7065.
In this work, we describe the results of a comprehensive structural bioinformatics analysis of the spliceosomal proteome. We used fold recognition analysis to complement prior data on the ordered domains of 252 human splicing proteins. Examples of newly identified domains include a PWI domain in the U5 snRNP protein 200K (hBrr2, residues 258–338), while examples of previously known domains with a newly determined fold include the DUF1115 domain of the U4/U6 di-snRNP protein 90K (hPrp3, residues 540–683). We also established a non-redundant set of experimental models of spliceosomal proteins, as well as constructed in silico models for regions without an experimental structure. The combined set of structural models is available for download. Altogether, over 90% of the ordered regions of the spliceosomal proteome can be represented structurally with a high degree of confidence. We analyzed the reduced spliceosomal proteome of the intron-poor organism Giardia lamblia, and as a result, we proposed a candidate set of ordered structural regions necessary for a functional spliceosome. The results of this work will aid experimental and structural analyses of the spliceosomal proteins and complexes, and can serve as a starting point for multiscale modeling of the structure of the entire spliceosome.
doi:10.1093/nar/gks347
PMCID: PMC3424538  PMID: 22573172
16.  Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life 
Nucleic Acids Research  2012;40(11):5149-5161.
Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNAPhe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m2G6 (N2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl-l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNAPhe of T. thermophilus and via site-directed mutagenesis.
doi:10.1093/nar/gks163
PMCID: PMC3367198  PMID: 22362751
17.  RIBER/DIBER: a software suite for crystal content analysis in the studies of protein–nucleic acid complexes 
Bioinformatics  2012;28(6):880-881.
Summary: Co-crystallization experiments of proteins with nucleic acids do not guarantee that both components are present in the crystal. We have previously developed DIBER to predict crystal content when protein and DNA are present in the crystallization mix. Here, we present RIBER, which should be used when protein and RNA are in the crystallization drop. The combined RIBER/DIBER suite builds on machine learning techniques to make reliable, quantitative predictions of crystal content for non-expert users and high-throughput crystallography.
Availability: The program source code, Linux binaries and a web server are available at http://diber.iimcb.gov.pl/ RIBER/DIBER requires diffraction data to at least 3.0 Å resolution in MTZ or CIF (web server only) format. The RIBER/DIBER code is subject to the GNU Public License.
Contact: gchojnowski@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts003
PMCID: PMC3307108  PMID: 22238259
18.  FILTREST3D: discrimination of structural models using restraints from experimental data 
Bioinformatics  2010;26(23):2986-2987.
Summary: Automatic methods for macromolecular structure prediction (fold recognition, de novo folding and docking programs) produce large sets of alternative models. These large model sets often include many native-like structures, which are often scored as false positives. Such native-like models can be more easily identified based on data from experimental analyses used as structural restraints (e.g. identification of nearby residues by cross-linking, chemical modification, site-directed mutagenesis, deuterium exchange coupled with mass spectrometry, etc.). We present a simple server for scoring and ranking of models according to their agreement with user-defined restraints.
Availability: FILTREST3D is freely available for users as a web server and standalone software at: http://filtrest3d.genesilico.pl/
Contact: iamb@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq582
PMCID: PMC2982159  PMID: 20956242
19.  MetalionRNA: computational predictor of metal-binding sites in RNA structures 
Bioinformatics  2011;28(2):198-205.
Motivation: Metal ions are essential for the folding of RNA molecules into stable tertiary structures and are often involved in the catalytic activity of ribozymes. However, the positions of metal ions in RNA 3D structures are difficult to determine experimentally. This motivated us to develop a computational predictor of metal ion sites for RNA structures.
Results: We developed a statistical potential for predicting positions of metal ions (magnesium, sodium and potassium), based on the analysis of binding sites in experimentally solved RNA structures. The MetalionRNA program is available as a web server that predicts metal ions for RNA structures submitted by the user.
Availability: The MetalionRNA web server is accessible at http://metalionrna.genesilico.pl/.
Contact: iamb@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr636
PMCID: PMC3259437  PMID: 22110243
20.  Novel non-specific DNA adenine methyltransferases 
Nucleic Acids Research  2011;40(5):2119-2130.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.
doi:10.1093/nar/gkr1039
PMCID: PMC3299994  PMID: 22102579
21.  Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair 
Human mutation  2010;31(8):975-982.
Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome which predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased co-expression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.
doi:10.1002/humu.21301
PMCID: PMC2908215  PMID: 20533529
Lynch syndrome; HNPCC; MLH1; PMS2; MutL; missense mutation; dimerization
22.  Evidence for an evolutionary antagonism between Mrr and Type III modification systems 
Nucleic Acids Research  2011;39(14):5991-6001.
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.
doi:10.1093/nar/gkr219
PMCID: PMC3152355  PMID: 21504983
23.  2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family 
Nucleic Acids Research  2011;39(11):4756-4768.
The 5′ cap of human messenger RNA consists of an inverted 7-methylguanosine linked to the first transcribed nucleotide by a unique 5′–5′ triphosphate bond followed by 2′-O-ribose methylation of the first and often the second transcribed nucleotides, likely serving to modify efficiency of transcript processing, translation and stability. We report the validation of a human enzyme that methylates the ribose of the second transcribed nucleotide encoded by FTSJD1, henceforth renamed HMTR2 to reflect function. Purified recombinant hMTr2 protein transfers a methyl group from S-adenosylmethionine to the 2′-O-ribose of the second nucleotide of messenger RNA and small nuclear RNA. Neither N7 methylation of the guanosine cap nor 2′-O-ribose methylation of the first transcribed nucleotide are required for hMTr2, but the presence of cap1 methylation increases hMTr2 activity. The hMTr2 protein is distributed throughout the nucleus and cytosol, in contrast to the nuclear hMTr1. The details of how and why specific transcripts undergo modification with these ribose methylations remains to be elucidated. The 2′-O-ribose RNA cap methyltransferases are present in varying combinations in most eukaryotic and many viral genomes. With the capping enzymes in hand their biological purpose can be ascertained.
doi:10.1093/nar/gkr038
PMCID: PMC3113572  PMID: 21310715
24.  ModeRNA: a tool for comparative modeling of RNA 3D structure 
Nucleic Acids Research  2011;39(10):4007-4022.
RNA is a large group of functionally important biomacromolecules. In striking analogy to proteins, the function of RNA depends on its structure and dynamics, which in turn is encoded in the linear sequence. However, while there are numerous methods for computational prediction of protein three-dimensional (3D) structure from sequence, with comparative modeling being the most reliable approach, there are very few such methods for RNA. Here, we present ModeRNA, a software tool for comparative modeling of RNA 3D structures. As an input, ModeRNA requires a 3D structure of a template RNA molecule, and a sequence alignment between the target to be modeled and the template. It must be emphasized that a good alignment is required for successful modeling, and for large and complex RNA molecules the development of a good alignment usually requires manual adjustments of the input data based on previous expertise of the respective RNA family. ModeRNA can model post-transcriptional modifications, a functionally important feature analogous to post-translational modifications in proteins. ModeRNA can also model DNA structures or use them as templates. It is equipped with many functions for merging fragments of different nucleic acid structures into a single model and analyzing their geometry. Windows and UNIX implementations of ModeRNA with comprehensive documentation and a tutorial are freely available.
doi:10.1093/nar/gkq1320
PMCID: PMC3105415  PMID: 21300639
25.  RNA and protein 3D structure modeling: similarities and differences 
Journal of Molecular Modeling  2011;17(9):2325-2336.
In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed “protein-like” modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using “protein-like” methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.
FigureApproaches for predicting RNA structure. Top: Template-free modeling. Bottom: Template-based modeling
doi:10.1007/s00894-010-0951-x
PMCID: PMC3168752  PMID: 21258831
Assessment; Prediction; RNA; Structure; Tertiary

Results 1-25 (68)