PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  RNAmap2D – calculation, visualization and analysis of contact and distance maps for RNA and protein-RNA complex structures 
BMC Bioinformatics  2012;13:333.
Background
The structures of biological macromolecules provide a framework for studying their biological functions. Three-dimensional structures of proteins, nucleic acids, or their complexes, are difficult to visualize in detail on flat surfaces, and algorithms for their spatial superposition and comparison are computationally costly. Molecular structures, however, can be represented as 2D maps of interactions between the individual residues, which are easier to visualize and compare, and which can be reconverted to 3D structures with reasonable precision. There are many visualization tools for maps of protein structures, but few for nucleic acids.
Results
We developed RNAmap2D, a platform-independent software tool for calculation, visualization and analysis of contact and distance maps for nucleic acid molecules and their complexes with proteins or ligands. The program addresses the problem of paucity of bioinformatics tools dedicated to analyzing RNA 2D maps, given the growing number of experimentally solved RNA structures in the Protein Data Bank (PDB) repository, as well as the growing number of tools for RNA 2D and 3D structure prediction. RNAmap2D allows for calculation and analysis of contacts and distances between various classes of atoms in nucleic acid, protein, and small ligand molecules. It also discriminates between different types of base pairing and stacking.
Conclusions
RNAmap2D is an easy to use method to visualize, analyze and compare structures of nucleic acid molecules and their complexes with other molecules, such as proteins or ligands and metal ions. Its special features make it a very useful tool for analysis of tertiary structures of RNAs. RNAmap2D for Windows/Linux/MacOSX is freely available for academic users at http://iimcb.genesilico.pl/rnamap2d.html
doi:10.1186/1471-2105-13-333
PMCID: PMC3556492  PMID: 23259794
Contact maps; Distance maps; RNA secondary structure; RNA base pairing; RNA stacking; Protein-RNA complex; Docking
2.  DARS-RNP and QUASI-RNP: New statistical potentials for protein-RNA docking 
BMC Bioinformatics  2011;12:348.
Background
Protein-RNA interactions play fundamental roles in many biological processes. Understanding the molecular mechanism of protein-RNA recognition and formation of protein-RNA complexes is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes is tedious and difficult, both by X-ray crystallography and NMR. For many interacting proteins and RNAs the individual structures are available, enabling computational prediction of complex structures by computational docking. However, methods for protein-RNA docking remain scarce, in particular in comparison to the numerous methods for protein-protein docking.
Results
We developed two medium-resolution, knowledge-based potentials for scoring protein-RNA models obtained by docking: the quasi-chemical potential (QUASI-RNP) and the Decoys As the Reference State potential (DARS-RNP). Both potentials use a coarse-grained representation for both RNA and protein molecules and are capable of dealing with RNA structures with posttranscriptionally modified residues. We compared the discriminative power of DARS-RNP and QUASI-RNP for selecting rigid-body docking poses with the potentials previously developed by the Varani and Fernandez groups.
Conclusions
In both bound and unbound docking tests, DARS-RNP showed the highest ability to identify native-like structures. Python implementations of DARS-RNP and QUASI-RNP are freely available for download at http://iimcb.genesilico.pl/RNP/
doi:10.1186/1471-2105-12-348
PMCID: PMC3179970  PMID: 21851628
RNA; protein; RNP; macromolecular docking; complex modeling; structural bioinformatics
3.  MetaMQAP: A meta-server for the quality assessment of protein models 
BMC Bioinformatics  2008;9:403.
Background
Computational models of protein structure are usually inaccurate and exhibit significant deviations from the true structure. The utility of models depends on the degree of these deviations. A number of predictive methods have been developed to discriminate between the globally incorrect and approximately correct models. However, only a few methods predict correctness of different parts of computational models. Several Model Quality Assessment Programs (MQAPs) have been developed to detect local inaccuracies in unrefined crystallographic models, but it is not known if they are useful for computational models, which usually exhibit different and much more severe errors.
Results
The ability to identify local errors in models was tested for eight MQAPs: VERIFY3D, PROSA, BALA, ANOLEA, PROVE, TUNE, REFINER, PROQRES on 8251 models from the CASP-5 and CASP-6 experiments, by calculating the Spearman's rank correlation coefficients between per-residue scores of these methods and local deviations between C-alpha atoms in the models vs. experimental structures. As a reference, we calculated the value of correlation between the local deviations and trivial features that can be calculated for each residue directly from the models, i.e. solvent accessibility, depth in the structure, and the number of local and non-local neighbours. We found that absolute correlations of scores returned by the MQAPs and local deviations were poor for all methods. In addition, scores of PROQRES and several other MQAPs strongly correlate with 'trivial' features. Therefore, we developed MetaMQAP, a meta-predictor based on a multivariate regression model, which uses scores of the above-mentioned methods, but in which trivial parameters are controlled. MetaMQAP predicts the absolute deviation (in Ångströms) of individual C-alpha atoms between the model and the unknown true structure as well as global deviations (expressed as root mean square deviation and GDT_TS scores). Local model accuracy predicted by MetaMQAP shows an impressive correlation coefficient of 0.7 with true deviations from native structures, a significant improvement over all constituent primary MQAP scores. The global MetaMQAP score is correlated with model GDT_TS on the level of 0.89.
Conclusion
Finally, we compared our method with the MQAPs that scored best in the 7th edition of CASP, using CASP7 server models (not included in the MetaMQAP training set) as the test data. In our benchmark, MetaMQAP is outperformed only by PCONS6 and method QA_556 – methods that require comparison of multiple alternative models and score each of them depending on its similarity to other models. MetaMQAP is however the best among methods capable of evaluating just single models.
We implemented the MetaMQAP as a web server available for free use by all academic users at the URL
doi:10.1186/1471-2105-9-403
PMCID: PMC2573893  PMID: 18823532

Results 1-3 (3)