PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability 
The risk of global extinction of reef-building coral species is increasing. We evaluated extinction risk using a biological trait-based resiliency index that was compared with Caribbean extinction during the Plio-Pleistocene, and with extinction risk determined by the International Union for Conservation of Nature (IUCN). Through the Plio-Pleistocene, the Caribbean supported more diverse coral assemblages than today and shared considerable overlap with contemporary Indo-Pacific reefs. A clear association was found between extant Plio-Pleistocene coral genera and our positive resilience scores. Regional extinction in the past and vulnerability in the present suggests that Pocillopora, Stylophora and foliose Pavona are among the most susceptible taxa to local and regional isolation. These same taxa were among the most abundant corals in the Caribbean Pliocene. Therefore, a widespread distribution did not equate with immunity to regional extinction. The strong relationship between past and present vulnerability suggests that regional extinction events are trait-based and not merely random episodes. We found several inconsistencies between our data and the IUCN scores, which suggest a need to critically re-examine what constitutes coral vulnerability.
doi:10.1098/rspb.2011.2621
PMCID: PMC3350676  PMID: 22337694
biological trait; coral; extinction risk; Plio-Pleistocene; resilience; vulnerability
2.  Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals 
Background
Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae.
Results
Concatenated phylogenetic analysis showed most species of Caribbean faviids were monophyletic, with the exception of two Manicina species. The time-calibrated tree revealed the stem group originated around the closure of the Tethys Sea (17.0 Ma), while the genus Manicina diversified during the Late Miocene (8.20 Ma), when increased sedimentation and productivity may have favored free-living, heterotrophic species. Reef and shallow water specialists, represented by Diploria and Favia, originate at the beginning of the Pliocene (5 – 6 Ma) as the Isthmus of Panama shoaled and regional productivity declined.
Conclusions
Later origination of the stem group than predicted from the fossil record corroborates the hypothesis of morphological convergence in Diploria and Favia genera. Our data support the rapid evolution of morphological and life-history traits among faviid corals that can be linked to Mio-Pliocene environmental changes.
doi:10.1186/1471-2148-12-123
PMCID: PMC3424149  PMID: 22831179
Scleractinia; Speciation; Adaptive radiation; Miocene; Pliocene; Coral reef

Results 1-2 (2)