Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
PMCID: PMC2776081  PMID: 19333953
2.  Klinefelter’s Syndrome, 47,XXY, in Male Systemic Lupus Erythematosus Supports a Gene Dose Effect from the X Chromosome 
Arthritis and rheumatism  2008;58(8):2511-2517.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that predominantly affects women. Despite Klinefelter's syndrome (47,XXY) and SLE coexisting in isolated cases, no association has been established with SLE or any other autoimmune disease. Methods: Sex chromosome genotyping was performed in 981 SLE patients (213 were men). A first group of 843 SLE patients from 378 multiplex families and a second group of 138 men with non-familial SLE were evaluated. Fluorescent in situ hybridization (FISH) and karyotyping in transformed B cell lines enumerated chromosomes for selected cases.
Of 213 men with SLE, five had Klinefelter's syndrome (or 1 in 43). Four of them were heterozygous at X markers. FISH and karyotyping confirmed Klinefelter’s syndrome in the fifth. An overall rate of 235 47,XXY per 10,000 male SLE patients (95%CI: 77 to 539) was found, a dramatic increase over the known prevalence of Klinefelter's syndrome in an unselected population (17 per 10,000 live male births). Asking men with SLE about fertility was highly sensitive (100%) for Klinefelter’s syndrome. All 768 SLE women were heterozygous at X.
47,XXY Klinefelter's syndrome, often subclinical, is increased in men with SLE by ~14-fold, compared to its prevalence in men without SLE. Diagnostic vigilance for 47,XXY males in SLE is warranted. These data are the first to associate Klinefelter's syndrome with an autoimmune disease found predominantly in women. The risk of SLE in Klinefelter's syndrome is predicted to be similar to the risk in normal 46,XX women and ~14-fold higher than in 46,XY men, consistent with SLE susceptibility being partly explained by a X chromosome gene dose effect.
PMCID: PMC2824898  PMID: 18668569

Results 1-2 (2)