PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 × 10−4), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin.
doi:10.1155/2010/706825
PMCID: PMC2914299  PMID: 20706608
2.  ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash, and immunologic manifestations in lupus patients with European ancestry 
Annals of the rheumatic diseases  2009;69(7):1329-1332.
Purpose
We hypothesized that the coding variant (R77H), rs1143679, within ITGAM could predict specific clinical manifestations associated with lupus.
Method
To assess genetic association, 2366 lupus cases and 2931 unaffected controls with European ancestry were analyzed. Lupus patients were coded by the presence or absence of individual ACR criteria. Logistic regression and Pearson chi-square tests were used to assess statistical significance.
Results
First, for overall case-control analysis, we detected highly significant (p=2.22×10−21, OR=1.73) association. Second, using case-only analysis we detected significant association with renal criteria (p=0.0003), discoid rash (p=0.02), and immunologic criteria (p=0.04). Third, we compared them with healthy controls, the association became stronger for renal (p=4.69×10−22, OR=2.15), discoid (p=1.77×10−14, OR=2.03), and immunologic (p=3.49×10−22, OR = 1.86) criteria. Risk allele frequency increased from 10.6% (controls) to 17.0% (lupus), 20.4% (renal), 18.1% (immunologic), and 19.5% (discoid).
Conclusion
These results demonstrated a strong association between the risk allele (A) at rs1143679 and renal disease, discoid rash, and immunological manifestations of lupus.
doi:10.1136/ard.2009.120543
PMCID: PMC2891778  PMID: 19939855
3.  Klinefelter’s Syndrome, 47,XXY, in Male Systemic Lupus Erythematosus Supports a Gene Dose Effect from the X Chromosome 
Arthritis and rheumatism  2008;58(8):2511-2517.
Background
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that predominantly affects women. Despite Klinefelter's syndrome (47,XXY) and SLE coexisting in isolated cases, no association has been established with SLE or any other autoimmune disease. Methods: Sex chromosome genotyping was performed in 981 SLE patients (213 were men). A first group of 843 SLE patients from 378 multiplex families and a second group of 138 men with non-familial SLE were evaluated. Fluorescent in situ hybridization (FISH) and karyotyping in transformed B cell lines enumerated chromosomes for selected cases.
Results
Of 213 men with SLE, five had Klinefelter's syndrome (or 1 in 43). Four of them were heterozygous at X markers. FISH and karyotyping confirmed Klinefelter’s syndrome in the fifth. An overall rate of 235 47,XXY per 10,000 male SLE patients (95%CI: 77 to 539) was found, a dramatic increase over the known prevalence of Klinefelter's syndrome in an unselected population (17 per 10,000 live male births). Asking men with SLE about fertility was highly sensitive (100%) for Klinefelter’s syndrome. All 768 SLE women were heterozygous at X.
Conclusions
47,XXY Klinefelter's syndrome, often subclinical, is increased in men with SLE by ~14-fold, compared to its prevalence in men without SLE. Diagnostic vigilance for 47,XXY males in SLE is warranted. These data are the first to associate Klinefelter's syndrome with an autoimmune disease found predominantly in women. The risk of SLE in Klinefelter's syndrome is predicted to be similar to the risk in normal 46,XX women and ~14-fold higher than in 46,XY men, consistent with SLE susceptibility being partly explained by a X chromosome gene dose effect.
doi:10.1002/art.23701
PMCID: PMC2824898  PMID: 18668569
4.  Genetic Associations of LYN with Systemic Lupus Erythematosus 
Genes and immunity  2009;10(5):397-403.
We targeted LYN, a src-tyosine kinase involved in B cell activation, in case-control association studies using populations of European American, African American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, demonstrates significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (p=1.1 × 10−4, OR=0.81 (95% CI: 0.73 – 0.90)). This SNP is located in the 5′ UTR within the first intron near the transcription initiation site of LYN. Additional SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for SLE susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European American female cases by ACR classification criteria reveals a reduction in the risk of hematologic disorder with rs6983130 compared to cases without hematologic disorders (p=1.5 × 10−3, OR=0.75 (95% C.I.=0.62-0.89)). None of the 90 SNPs tested demonstrate significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
doi:10.1038/gene.2009.19
PMCID: PMC2750001  PMID: 19369946
systemic lupus erythematosus; association; LYN; SNP
5.  Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-Derived Population 
Genes and immunity  2009;10(5):531-538.
Systemic lupus erythematosus (SLE) is an autoimmune disease with highly variable clinical presentation. Patients suffer from immunological abnormalities that target T cell, B cell and accessory cell functions. B cells are hyperactive in SLE patients. An adaptor protein expressed in B cells called BANK1 (B-cell scaffold protein with ankyrin repeats) was reported in a previous study to be associated with SLE in a European population. The objective of this study is to assess the BANK1 genotype-phenotype association in an independent replication sample. We genotyped 38 single nucleotide polymorphisms (SNPs) in BANK1 on 1892 European-derived SLE patients and 2652 European-derived controls. The strongest associations with SLE and BANK1 were at rs17266594 (corrected p-value=1.97 × 10−5, OR=1.22, 95% C.I.(1.12–1.34)) and rs10516487 (corrected p-value=2.59 × 10−5, OR=1.22, 95% C.I.(1.11–1.34)). Our findings suggest that the association is explained by these two SNPs, confirming previous reports that these polymorphisms contribute to the risk of developing lupus. Analysis of patient subsets enriched for hematological, immunological and renal ACR criteria or the levels of autoantibodies, such as anti-RNP A and anti-SmRNP, uncovers additional BANK1 associations. Our results suggest that BANK1 polymorphisms alter immune system development and function to increase the risk for developing lupus.
doi:10.1038/gene.2009.18
PMCID: PMC2736873  PMID: 19339986
systemic lupus erythematosus; replication; association; European; BANK1

Results 1-5 (5)