Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci 
Nature genetics  2008;40(2):204-210.
Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease with complex etiology but strong clustering in families (λS = ~30). We performed a genome-wide association scan using 317,501 SNPs in 720 women of European ancestry with SLE and in 2,337 controls, and we genotyped consistently associated SNPs in two additional independent sample sets totaling 1,846 affected women and 1,825 controls. Aside from the expected strong association between SLE and the HLA region on chromosome 6p21 and the previously confirmed non-HLA locus IRF5 on chromosome 7q32, we found evidence of association with replication (1.1 × 10−7 < Poverall < 1.6 × 10−23; odds ratio 0.82–1.62)in four regions: 16p11.2 (ITGAM), 11p15.5 (KIAA1542), 3p14.3 (PXK) and 1q25.1 (rs10798269). We also found evidence for association (P < 1 × 10−5) at FCGR2A, PTPN22 and STAT4, regions previously associated with SLE and other autoimmune diseases, as well as at ≥9 other loci (P < 2 × 10−7). Our results show that numerous genes, some with known immune-related functions, predispose to SLE.
PMCID: PMC3712260  PMID: 18204446
2.  Genetic Associations of LYN with Systemic Lupus Erythematosus 
Genes and immunity  2009;10(5):397-403.
We targeted LYN, a src-tyosine kinase involved in B cell activation, in case-control association studies using populations of European American, African American and Korean subjects. Our combined European-derived population, consisting of 2463 independent cases and 3131 unrelated controls, demonstrates significant association with rs6983130 in a female-only analysis with 2254 cases and 2228 controls (p=1.1 × 10−4, OR=0.81 (95% CI: 0.73 – 0.90)). This SNP is located in the 5′ UTR within the first intron near the transcription initiation site of LYN. Additional SNPs upstream of the first exon also show weak and sporadic association in subsets of the total European American population. Multivariate logistic regression analysis implicates rs6983130 as a protective factor for SLE susceptibility when anti-dsDNA, anti-chromatin, anti-52 kDa Ro or anti-Sm autoantibody status were used as covariates. Subset analysis of the European American female cases by ACR classification criteria reveals a reduction in the risk of hematologic disorder with rs6983130 compared to cases without hematologic disorders (p=1.5 × 10−3, OR=0.75 (95% C.I.=0.62-0.89)). None of the 90 SNPs tested demonstrate significant association with SLE in the African American or Korean populations. These results support an association of LYN with European-derived individuals with SLE, especially within autoantibody or clinical subsets.
PMCID: PMC2750001  PMID: 19369946
systemic lupus erythematosus; association; LYN; SNP
3.  Replication of the BANK1 genetic association with systemic lupus erythematosus in a European-Derived Population 
Genes and immunity  2009;10(5):531-538.
Systemic lupus erythematosus (SLE) is an autoimmune disease with highly variable clinical presentation. Patients suffer from immunological abnormalities that target T cell, B cell and accessory cell functions. B cells are hyperactive in SLE patients. An adaptor protein expressed in B cells called BANK1 (B-cell scaffold protein with ankyrin repeats) was reported in a previous study to be associated with SLE in a European population. The objective of this study is to assess the BANK1 genotype-phenotype association in an independent replication sample. We genotyped 38 single nucleotide polymorphisms (SNPs) in BANK1 on 1892 European-derived SLE patients and 2652 European-derived controls. The strongest associations with SLE and BANK1 were at rs17266594 (corrected p-value=1.97 × 10−5, OR=1.22, 95% C.I.(1.12–1.34)) and rs10516487 (corrected p-value=2.59 × 10−5, OR=1.22, 95% C.I.(1.11–1.34)). Our findings suggest that the association is explained by these two SNPs, confirming previous reports that these polymorphisms contribute to the risk of developing lupus. Analysis of patient subsets enriched for hematological, immunological and renal ACR criteria or the levels of autoantibodies, such as anti-RNP A and anti-SmRNP, uncovers additional BANK1 associations. Our results suggest that BANK1 polymorphisms alter immune system development and function to increase the risk for developing lupus.
PMCID: PMC2736873  PMID: 19339986
systemic lupus erythematosus; replication; association; European; BANK1
4.  Genome-wide linkage screen for stature and body mass index in 3.032 families: evidence for sex- and population-specific genetic effects 
Stature (adult body height) and body mass index (BMI) have a strong genetic component explaining observed variation in human populations; however, identifying those genetic components has been extremely challenging. It seems obvious that sample size is a critical determinant for successful identification of quantitative trait loci (QTL) that underlie the genetic architecture of these polygenic traits. The inherent shared environment and known genetic relationships in family studies provide clear advantages for gene mapping over studies utilizing unrelated individuals. To these ends, we combined the genotype and phenotype data from four previously performed family-based genome-wide screens resulting in a sample of 9.371 individuals from 3.032 African-American and European-American families and performed variance-components linkage analyses for stature and BMI. To our knowledge, this study represents the single largest family-based genome-wide linkage scan published for stature and BMI to date. This large study sample allowed us to pursue population- and sex-specific analyses as well. For stature, we found evidence for linkage in previously reported loci on 11q23, 12q12, 15q25 and 18q23, as well as 15q26 and 19q13, which have not been linked to stature previously. For BMI, we found evidence for two loci: one on 7q35 and another on 11q22, both of which have been previously linked to BMI in multiple populations. Our results show both the benefit of (1) combining data to maximize the sample size and (2) minimizing heterogeneity by analyzing subgroups where within-group variation can be reduced and suggest that the latter may be a more successful approach in genetic mapping.
PMCID: PMC2628452  PMID: 18781184
body height; body mass index; linkage mapping; quantitative trait loci

Results 1-4 (4)