Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)
Year of Publication
Document Types
1.  The Lupus Family Registry and Repository 
Rheumatology (Oxford, England)  2010;50(1):47-59.
The Lupus Family Registry and Repository (LFRR) was established with the goal of assembling and distributing materials and data from families with one or more living members diagnosed with SLE, in order to address SLE genetics. In the present article, we describe the problems and solutions of the registry design and biometric data gathering; the protocols implemented to guarantee data quality and protection of participant privacy and consent; and the establishment of a local and international network of collaborators. At the same time, we illustrate how the LFRR has enabled progress in lupus genetics research, answering old scientific questions while laying out new challenges in the elucidation of the biologic mechanisms that underlie disease pathogenesis. Trained staff ascertain SLE cases, unaffected family members and population-based controls, proceeding in compliance with the relevant laws and standards; participant consent and privacy are central to the LFRR’s effort. Data, DNA, serum, plasma, peripheral blood and transformed B-cell lines are collected and stored, and subject to strict quality control and safety measures. Coded data and materials derived from the registry are available for approved scientific users. The LFRR has contributed to the discovery of most of the 37 genetic associations now known to contribute to lupus through 104 publications. The LFRR contains 2618 lupus cases from 1954 pedigrees that are being studied by 76 approved users and their collaborators. The registry includes difficult to obtain populations, such as multiplex pedigrees, minority patients and affected males, and constitutes the largest collection of lupus pedigrees in the world. The LFRR is a useful resource for the discovery and characterization of genetic associations in SLE.
PMCID: PMC3307518  PMID: 20864496
Systemic lupus erythematosus; Registry; Repository; Autoimmune diseases; Genetics; Heritability; Genome-wide association studies; Linkage analysis; Minorities; Women
2.  The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 × 10−4), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin.
PMCID: PMC2914299  PMID: 20706608
3.  ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash, and immunologic manifestations in lupus patients with European ancestry 
Annals of the rheumatic diseases  2009;69(7):1329-1332.
We hypothesized that the coding variant (R77H), rs1143679, within ITGAM could predict specific clinical manifestations associated with lupus.
To assess genetic association, 2366 lupus cases and 2931 unaffected controls with European ancestry were analyzed. Lupus patients were coded by the presence or absence of individual ACR criteria. Logistic regression and Pearson chi-square tests were used to assess statistical significance.
First, for overall case-control analysis, we detected highly significant (p=2.22×10−21, OR=1.73) association. Second, using case-only analysis we detected significant association with renal criteria (p=0.0003), discoid rash (p=0.02), and immunologic criteria (p=0.04). Third, we compared them with healthy controls, the association became stronger for renal (p=4.69×10−22, OR=2.15), discoid (p=1.77×10−14, OR=2.03), and immunologic (p=3.49×10−22, OR = 1.86) criteria. Risk allele frequency increased from 10.6% (controls) to 17.0% (lupus), 20.4% (renal), 18.1% (immunologic), and 19.5% (discoid).
These results demonstrated a strong association between the risk allele (A) at rs1143679 and renal disease, discoid rash, and immunological manifestations of lupus.
PMCID: PMC2891778  PMID: 19939855
4.  Identification of Unique MicroRNA Signature Associated with Lupus Nephritis 
PLoS ONE  2010;5(5):e10344.
MicroRNAs (miRNA) have emerged as an important new class of modulators of gene expression. In this study we investigated miRNA that are differentially expressed in lupus nephritis. Microarray technology was used to investigate differentially expressed miRNA in peripheral blood mononuclear cells (PBMCs) and Epstein-Barr Virus (EBV)-transformed cell lines obtained from lupus nephritis affected patients and unaffected controls. TaqMan-based stem-loop real-time polymerase chain reaction was used for validation. Microarray analysis of miRNA expressed in both African American (AA) and European American (EA) derived lupus nephritis samples revealed 29 and 50 differentially expressed miRNA, respectively, of 850 tested. There were 18 miRNA that were differentially expressed in both racial groups. When samples from both racial groups and different specimen types were considered, there were 5 primary miRNA that were differentially expressed. We have identified 5 miRNA; hsa-miR-371-5P, hsa-miR-423-5P, hsa-miR-638, hsa-miR-1224-3P and hsa-miR-663 that were differentially expressed in lupus nephritis across different racial groups and all specimen types tested. Hsa-miR-371-5P, hsa-miR-1224-3P and hsa-miR-423-5P, are reported here for the first time to be associated with lupus nephritis. Our work establishes EBV-transformed B cell lines as a useful model for the discovery of miRNA as biomarkers for SLE. Based on these findings, we postulate that these differentially expressed miRNA may be potential novel biomarkers for SLE as well as help elucidate pathogenic mechanisms of lupus nephritis. The investigation of miRNA profiles in SLE may lead to the discovery and development of novel methods to diagnosis, treat and prevent SLE.
PMCID: PMC2867940  PMID: 20485490
5.  High density genotyping of STAT4 gene reveals multiple haplotypic associations with Systemic Lupus Erythematosus in different racial groups 
Arthritis and rheumatism  2009;60(4):1085-1095.
Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder with complex etiology and a strong genetic component. Recently, gene products involved in the interferon pathway have been under intense investigation in SLE pathogenesis. STAT1 and STAT4 are transcription factors that play key roles in the interferon and Th1 signaling pathways, making them attractive candidates for SLE susceptibility.
Fifty-six single-nucleotide polymorphisms (SNPs) across STAT1 and STAT4 genes on chromosome 2 were genotyped using Illumina platform as a part of extensive association study in a large collection of 9923 lupus cases and controls from different racial groups. DNA from patients and controls was obtained from peripheral blood. Principal component analyses and population based case-control association analyses were performed and the p values, FDR q values and Odds ratios with 95% confidence intervals (95% CIs) were calculated.
We observed strong genetic associations with SLE and multiple SNPs located within the STAT4 gene in different ethnicities (Fisher combined p= 7.02×10−25). In addition to strong confirmation of the association in the 3rd intronic region of this gene reported previously, we identified additional haplotypic association across STAT4 gene and in particular a common risk haplotype that is found in multiple racial groups. In contrast, only a relatively weak suggestive association was observed with STAT1, probably due to the proximity to STAT4.
Our findings indicate that the STAT4 gene is likely to be a crucial component in SLE pathogenesis among multiple racial groups. The functional effects of this association, when revealed, might improve our understanding of the disease and provide new therapeutic targets.
PMCID: PMC2776081  PMID: 19333953
6.  Klinefelter’s Syndrome, 47,XXY, in Male Systemic Lupus Erythematosus Supports a Gene Dose Effect from the X Chromosome 
Arthritis and rheumatism  2008;58(8):2511-2517.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that predominantly affects women. Despite Klinefelter's syndrome (47,XXY) and SLE coexisting in isolated cases, no association has been established with SLE or any other autoimmune disease. Methods: Sex chromosome genotyping was performed in 981 SLE patients (213 were men). A first group of 843 SLE patients from 378 multiplex families and a second group of 138 men with non-familial SLE were evaluated. Fluorescent in situ hybridization (FISH) and karyotyping in transformed B cell lines enumerated chromosomes for selected cases.
Of 213 men with SLE, five had Klinefelter's syndrome (or 1 in 43). Four of them were heterozygous at X markers. FISH and karyotyping confirmed Klinefelter’s syndrome in the fifth. An overall rate of 235 47,XXY per 10,000 male SLE patients (95%CI: 77 to 539) was found, a dramatic increase over the known prevalence of Klinefelter's syndrome in an unselected population (17 per 10,000 live male births). Asking men with SLE about fertility was highly sensitive (100%) for Klinefelter’s syndrome. All 768 SLE women were heterozygous at X.
47,XXY Klinefelter's syndrome, often subclinical, is increased in men with SLE by ~14-fold, compared to its prevalence in men without SLE. Diagnostic vigilance for 47,XXY males in SLE is warranted. These data are the first to associate Klinefelter's syndrome with an autoimmune disease found predominantly in women. The risk of SLE in Klinefelter's syndrome is predicted to be similar to the risk in normal 46,XX women and ~14-fold higher than in 46,XY men, consistent with SLE susceptibility being partly explained by a X chromosome gene dose effect.
PMCID: PMC2824898  PMID: 18668569
7.  46,X,del(X)(q13) Turner's Syndrome Female with Systemic Lupus Erythematosus in a Pedigree Multiplex for SLE 
Genes and immunity  2009;10(5):478-481.
Systemic lupus erythematosus (SLE) disproportionately affects females. Recent work demonstrates that men with Klinefelter's syndrome (47,XXY males) have a similar risk of developing SLE as do genotypic females. We present an unusual case of an African American family with two SLE affected individuals in which one of the SLE patients also has Turner's syndrome [46,X,del(X)(q13)]. While not definitive, this family raises interesting questions regarding the role of genes located on the X chromosome in the development of SLE. The paucity of case reports documenting the overlap of SLE with Turner's syndrome while there is and association of male SLE with Klinefelter's syndrome suggests a lower risk of SLE in Turner's females. These observations are consistent with a gene dose effect at X with two X chromosomes (46,XX or 47,XXY) conferring higher risk and one X chromosome (46,XY or 45,XO) conferring lower risk of SLE.
PMCID: PMC2722751  PMID: 19458623
8.  The effects of previous Hysterectomy on Lupus 
Lupus  2009;18(11):1000-1005.
Hysterectomy is one of the most common surgical procedures performed in United States, and currently, one in three women in United States has had a hysterectomy by the age of 60 years. Systemic lupus erythematosus (SLE) is a common autoimmune disease and especially targets women of childbearing age at least 10 times higher than men, which reflects the major role of female sex hormones. In this retrospective study, we evaluate the potential effects of previous hysterectomy in our lupus cohort.Data collected fromstudy subject questionnaires were obtained fromthe Lupus Family Registry and Repository (LFRR) at the OklahomaMedical Research Foundation. Hysterectomy data were available from 3389 subjects. SLE patients with a positive history of hysterectomy have been selected and compared with matched lupus patients with a negative history of hysterectomy and healthy controls. Association analyses were performed, and the P values and adjusted odds ratios (ORs) were calculated. SLE patients with a negative history of hysterectomy more likely had kidney nephritis or positive anti-dsDNA than age-matched SLE patients with a history of hysterectomy before disease onset. This effect was independent of ethnicity with an OR of 6.66 (95% CI = 3.09–14.38, P = 1.00 × 10−8) in European patients and 2.74 (95% CI = 1.43–5.25, P = 0.001) in African-Americans. SLE patients with a positive history of hysterectomy before disease onset also had a later age of disease onset (P = 0.0001) after adjustment for age and race. Our findings support the notion that the influence of female sex hormones in SLE and various clinical findings are tremendous and that surgical menopause such as this could significantly affect the outcome of disease and clinical manifestations
PMCID: PMC2769169  PMID: 19762402
9.  Genome-wide Linkage Screen for Stature and Body-mass Index in 3.032 Families - Evidence for Sex- and Population-specific Genetic Effects 
Stature (adult body height), and body mass index (BMI) have a strong genetic component explaining observed variation in human populations, however, identifying those genetic components has been extremely challenging. It seems obvious that sample size is a critical determinant for successful identification of quantitative trait loci (QTL) that underlie the genetic architecture of these polygenic traits. The inherent shared environment and known genetic relationships in family studies provide clear advantages for gene mapping over studies utilizing unrelated individuals. To these ends, we combined the genotype and phenotype data from four previously performed family-based genome-wide screens resulting in a sample of 9.371 individuals from 3.032 African-American and European-American families and performed variance-components linkage analyses for stature and BMI. To our knowledge, this study represents the single largest family-based genome-wide linkage scan published for stature and BMI to date. This large study sample allowed us to pursue population-and sex-specific analyses as well. For stature we found evidence for linkage in previously reported loci on 11q23, 12q12, 15q25 and 18q23 as well as 15q26 and 19q13 which have not been linked to stature previously. For BMI we found evidence for two loci: one on 7q35 and another on 11q22 both of which have been previously linked to BMI in multiple populations. Our results show both the benefit of 1) combining data to maximize the sample size and 2) minimizing heterogeneity by analyzing subgroups where within-group variation can be reduced and suggest that the latter may be a more successful approach in genetic mapping.
PMCID: PMC2628452  PMID: 18781184
Body Height; Body Mass Index; Linkage mapping; Quantitative Trait Loci

Results 1-9 (9)