PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Plasma Nitrate/Nitrite Levels are Unchanged after Long-Term Aerobic Exercise Training in Older Adults 
Reduced nitric oxide (NO) production and bioactivity is a major contributor to endothelial dysfunction. Animal data suggests that improvements in endothelial function in response to aerobic exercise training may depend on the duration of the training program. However, no studies have examined changes in NO (as assessed by the major NO metabolites, nitrate and nitrite, NOx) after long-term training in humans. In addition, aging may impair the ability of the vasculature to increase NO with exercise. Thus, we determined whether 24 weeks of aerobic exercise training increases plasma NOx levels in sedentary older adults. We also examined changes in forearm blood flow (FBF) at rest and during reactive hyperemia as a measure of vasomotor function. Plasma NOx levels were measured in 82 men and women using a modified Griess assay. FBF was assessed in a subset of individuals (n=15) using venous occlusion plethysmography. After 24 weeks of exercise training, there were significant improvements in maximum oxygen consumption, HDL cholesterol, triglycerides, and body fat. Changes in plasma NOx levels ranged from −14.83 to +16.69 μmol/L; however, the mean change overall was not significant (−0.33±6.30 μmol/L, p=0.64). Changes in plasma NOx levels were not associated with age, gender, race, HDL cholesterol, triglycerides, body weight, body fat, or maximal oxygen consumption. There were also no significant changes in basal FBF, peak FBF, hyperemic response, total hyperemic flow, or minimum forearm vascular resistance with exercise training. In conclusion, improvements in plasma NOx levels and FBF are not evident after long-term training in older adults.
doi:10.1016/j.niox.2009.10.001
PMCID: PMC2796424  PMID: 19825427
exercise training; nitric oxide; forearm blood flow; aging
2.  Variation in the Lectin-like Oxidized LDL Receptor 1 (LOX-1) Gene Is Associated With Plasma Soluble LOX-1 Levels 
Experimental physiology  2008;93(9):1085-1090.
The lectin-like ox-LDL receptor 1 (LOX-1) expressed on vascular cells plays a major role in atherogenesis by internalizing and degrading oxidized LDL. LOX-1 can be cleaved from the cell surface and released as soluble LOX-1 (sLOX-1), and elevated sLOX-1 levels may be indicative of atherosclerotic plaque instability. We examined associations between the LOX-1 3′UTR-C/T and G501C polymorphisms and plasma sLOX-1 levels in 97 healthy older men and women. The frequencies for the 3′UTR-T and 501C alleles were 46% and 10%, respectively. Plasma sLOX-1 levels were significantly higher in the 3′UTR CC genotype group compared to both the CT (p=0.02) and TT (p=0.002) genotype groups. Plasma sLOX-1 were also significantly higher in the 501GC genotype group compared to the GG genotype group (p=0.004). In univariate analyses, sLOX-1 levels were significantly associated with both the 3′UTR-C/T and G501 C polymorphisms. These associations remained significant after adjusting for age, gender, race, and BMI. In conclusion, variation in the LOX-1 gene is associated with plasma sLOX-1 levels in older men and women.
doi:10.1113/expphysiol.2008.042267
PMCID: PMC2652129  PMID: 18469066
receptor; cardiovascular; gene expression

Results 1-2 (2)