Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
more »
Year of Publication
Document Types
1.  N-Acetylcysteine Normalizes Glutamate Levels in Cocaine-Dependent Patients: A Randomized Crossover Magnetic Resonance Spectroscopy Study 
Neuropsychopharmacology  2012;37(9):2143-2152.
Treatment with N-acetylcysteine (NAC) normalizes glutamate (Glu) homeostasis and prevents relapse in drug-dependent animals. However, the effect of NAC on brain Glu levels in substance-dependent humans has not yet been investigated. Proton magnetic resonance spectroscopy (1H MRS) was used to investigate Glu changes in the dorsal anterior cingulate cortex (dACC) after a single dose of NAC in cocaine-dependent patients and normal controls. In an open-label, randomized, crossover study, 8 cocaine-dependent patients and 14 healthy controls underwent two scan sessions: one group receiving no compound and the other following a single administration of 2400 mg NAC. The Barratt Impulsiveness Scale was administered to examine the relation between dACC Glu levels and impulsivity. In the medication-free condition, Glu levels in the dACC were significantly higher in cocaine-dependent patients compared with healthy controls. After administration of NAC, Glu levels were reduced in the cocaine-dependent group, whereas NAC had no effect in healthy controls. Higher baseline Glu levels were associated with higher impulsivity, and both were predictive of greater NAC-induced Glu reduction. The current findings indicate that NAC can normalize elevated Glu levels in cocaine-dependent patients. These findings may have important implications for treatment, because abnormal Glu levels are related to relapse, and treatment with NAC prevented relapse in animal studies. Furthermore, clinical studies have indicated beneficial effects of NAC in cocaine-dependent patients, and the current study suggests that these beneficial effects might in part be mediated by the ability of NAC to normalize glutamatergic abnormalities.
PMCID: PMC3398721  PMID: 22549117
cocaine dependence; N-acetylcysteine; glutamate; magnetic resonance spectroscopy; impulsivity; cocaine dependence; N-acetylcysteine; glutamate; magnetic resonance spectroscopy; impulsivity
2.  The association between cingulate cortex glutamate concentration and delay discounting is mediated by resting state functional connectivity 
Brain and Behavior  2012;2(5):553-562.
Humans vary in their ability to delay gratification and impulsive decision making is a common feature in various psychiatric disorders. The level of delay discounting is a relatively stable psychological trait, and therefore neural processes implicated in delay discounting are likely to be based on the overall functional organization of the brain (under task-free conditions) in which state-dependent shifts from baseline levels occur. The current study investigated whether delay discounting can be predicted by intrinsic properties of brain functioning. Fourteen healthy male subjects performed a delay discounting task. In addition, resting state functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (¹H MRS) were used to investigate the relationship between individual differences in delay discounting and molecular and regional measures of resting state (baseline) activity of dorsal anterior cingulate cortex (dACC). Results showed that delay discounting was associated with both dACC glutamate concentrations and resting state functional connectivity of the dACC with a midbrain region including ventral tegmental area and substantia nigra. In addition, a neural pathway was established, showing that the effect of glutamate concentrations in the dACC on delay discounting is mediated by functional connectivity of the dACC with the midbrain. The current findings are important to acknowledge because spontaneous intrinsic brain processes have been proposed to be a potential promising biomarker of disease and impulsive decision making is associated with several psychiatric disorders.
PMCID: PMC3489808  PMID: 23139901
Anterior cingulate cortex; delay discounting; glutamate; impulsive decision making; magnetic resonance spectroscopy; resting state fMRI
3.  Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research 
Brain and Behavior  2012;2(4):499-523.
Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence, and excessive caffeine use, comparing stimulant abusers (SAs) to nondrug using healthy controls (HCs). Despite some inconsistencies, most studies indicated altered brain activation in prefrontal cortex (PFC) and insula in response to reward and punishment, and higher limbic and anterior cingulate cortex (ACC)/PFC activation during craving and attentional bias paradigms in SAs compared with HCs. Impulsivity in SAs was associated with lower ACC and presupplementary motor area activity compared with HCs, and related to both ventral (amygdala, ventrolateral PFC, insula) and dorsal (dorsolateral PFC, dorsal ACC, posterior parietal cortex) systems. Decision making in SAs was associated with low dorsolateral PFC activity and high orbitofrontal activity. Finally, executive function in SAs was associated with lower activation in frontotemporal regions and higher activation in premotor cortex compared with HCs. It is concluded that the lower activations compared with HCs are likely to reflect the neural substrate of impaired neurocognitive functions, whereas higher activations in SAs compared with HCs are likely to reflect compensatory cognitive control mechanisms to keep behavioral task performance to a similar level as in HCs. However, before final conclusions can be drawn, additional research is needed using neuroimaging in SAs and HCs using larger and more homogeneous samples as well as more comparable task paradigms, study designs, and statistical analyses.
PMCID: PMC3432971  PMID: 22950052
Addiction; fMRI; functional imaging; magnetic resonance imaging; stimulant dependence; stimulants
4.  Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: an fMRI study 
Addiction Biology  2010;15(4):491-503.
Abnormal cue reactivity is a central characteristic of addiction, associated with increased activity in motivation, attention and memory related brain circuits. In this neuroimaging study, cue reactivity in problem gamblers (PRG) was compared with cue reactivity in heavy smokers (HSM) and healthy controls (HC). A functional magnetic resonance imaging event-related cue reactivity paradigm, consisting of gambling, smoking-related and neutral pictures, was employed in 17 treatment-seeking non-smoking PRG, 18 non-gambling HSM, and 17 non-gambling and non-smoking HC. Watching gambling pictures (relative to neutral pictures) was associated with higher brain activation in occipitotemporal areas, posterior cingulate cortex, parahippocampal gyrus and amygdala in PRG compared with HC and HSM. Subjective craving in PRG correlated positively with brain activation in left ventrolateral prefrontal cortex and left insula. When comparing the HSM group with the two other groups, no significant differences in brain activity induced by smoking cues were found. In a stratified analysis, the HSM subgroup with higher Fagerström Test for Nicotine Dependence scores (FTND M = 5.4) showed higher brain activation in ventromedial prefrontal cortex, rostral anterior cingulate cortex, insula and middle/superior temporal gyrus while watching smoking-related pictures (relative to neutral pictures) than the HSM subgroup with lower FTND scores (FTND M = 2.9) and than non-smoking HC. Nicotine craving correlated with activation in left prefrontal and left amygdala when viewing smoking-related pictures in HSM. Increased regional responsiveness to gambling pictures in brain regions linked to motivation and visual processing is present in PRG, similar to neural mechanisms underlying cue reactivity in substance dependence. Increased brain activation in related fronto-limbic brain areas was present in HSM with higher FTND scores compared with HSM with lower FTND scores.
PMCID: PMC3014110  PMID: 20840335
Addiction; cue reactivity; fMRI; impulse control disorder; nicotine dependence; pathological gambling

Results 1-4 (4)