PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Cannabinoid-1 receptor antagonist rimonabant (SR141716) increases striatal dopamine D2 receptor availability 
Addiction biology  2011;10.1111/j.1369-1600.2011.00369.x.
The cannabinoid 1 (CB1) receptor antagonist rimonabant (SR141716) alters rewarding properties and intake of food and drugs. Additionally, striatal dopamine D2 receptor (DRD2) availability has been implicated in reward function. This study shows that chronic treatment of rats with rimonabant (1.0 and 3.0 mg/kg/day) dose-dependently increased DRD2 availability in the dorsal striatum (14% and 23%) compared to vehicle. High-dose rimonabant also increased DRD2 availability in the ventral striatum (12%) and reduced weight gain. Thus, upregulation of striatal DRD2 by chronic rimonabant administration may be an underlying mechanism of action and confirms the interactions of the endocannabinoid and dopaminergic systems.
doi:10.1111/j.1369-1600.2011.00369.x
PMCID: PMC3252421  PMID: 21955259
cannabinoid 1 receptor; dopamine D2 receptor; IBZM; nucleus accumbens; rimonabant; striatum
2.  Substrates of neuropsychological functioning in stimulant dependence: a review of functional neuroimaging research 
Brain and Behavior  2012;2(4):499-523.
Stimulant dependence is associated with neuropsychological impairments. Here, we summarize and integrate the existing neuroimaging literature on the neural substrates of neuropsychological (dys)function in stimulant dependence, including cocaine, (meth-)amphetamine, ecstasy and nicotine dependence, and excessive caffeine use, comparing stimulant abusers (SAs) to nondrug using healthy controls (HCs). Despite some inconsistencies, most studies indicated altered brain activation in prefrontal cortex (PFC) and insula in response to reward and punishment, and higher limbic and anterior cingulate cortex (ACC)/PFC activation during craving and attentional bias paradigms in SAs compared with HCs. Impulsivity in SAs was associated with lower ACC and presupplementary motor area activity compared with HCs, and related to both ventral (amygdala, ventrolateral PFC, insula) and dorsal (dorsolateral PFC, dorsal ACC, posterior parietal cortex) systems. Decision making in SAs was associated with low dorsolateral PFC activity and high orbitofrontal activity. Finally, executive function in SAs was associated with lower activation in frontotemporal regions and higher activation in premotor cortex compared with HCs. It is concluded that the lower activations compared with HCs are likely to reflect the neural substrate of impaired neurocognitive functions, whereas higher activations in SAs compared with HCs are likely to reflect compensatory cognitive control mechanisms to keep behavioral task performance to a similar level as in HCs. However, before final conclusions can be drawn, additional research is needed using neuroimaging in SAs and HCs using larger and more homogeneous samples as well as more comparable task paradigms, study designs, and statistical analyses.
doi:10.1002/brb3.65
PMCID: PMC3432971  PMID: 22950052
Addiction; fMRI; functional imaging; magnetic resonance imaging; stimulant dependence; stimulants

Results 1-2 (2)