Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Temporal Lobar Predominance of TDP-43 Neuronal Cytoplasmic Inclusions in Alzheimer Disease 
Acta Neuropathologica  2008;116(2):215-220.
TAR DNA binding protein-43 (TDP-43) immunoreactive neuronal inclusions are detected in 20–30% of Alzheimer disease (AD) brains, but the distribution of this pathology has not been rigorously studied. In this report we describe region-specific distribution and density of TDP-43 positive neuronal cytoplasmic inclusions (NCIs) in clinically demented individuals with high probability AD pathology, all with Braak neurofibrillary tangle stages of V or VI. Sections of hippocampus, amygdala, as well as temporal, frontal and parietal neocortex were analyzed with TDP-43 immunohistochemistry, and the density of NCIs was assessed using a semiquantitative scoring method. Of the 29 cases, 6 had TDP-43 positive NCIs in the amygdala only, and 7 had TDP-43 inclusions restricted to amygdala and hippocampus. In 16 cases TDP-43 immunoreactivity was more widespread, affecting temporal, frontal or parietal neocortex. These findings indicate that medial temporal lobe limbic structures are vulnerable to TDP-43 pathology in advanced AD, and that the amygdala appears to be the most vulnerable region. The distribution of the lesions in this cross-sectional analysis may suggest a progression of TDP-43 pathology in AD, with limbic structures in the medial temporal lobe affected first followed by higher order association cortices.
PMCID: PMC3404722  PMID: 18592255
Amygdala; FTLD-U; FTLD-MND; frontotemporal dementia; motor neuron disease
2.  Update on the Diagnosis and Management of Sleep Disturbances in Dementia 
Sleep medicine clinics  2008;3(3):347-360.
PMCID: PMC3170725  PMID: 21915174
3.  Antemortem MRI based Structural Abnormality Index (STAND)-Scores Correlate with Postmortem Braak Neurofibrillary Tangle Stage 
NeuroImage  2008;42(2):559-567.
The clinical diagnosis of Alzheimer Disease (AD) does not exactly match the pathological findings at autopsy in every subject. Therefore, in-vivo imaging measures, such as Magnetic Resonance Imaging (MRI) that measure anatomical variations in each brain due to atrophy, would be clinically useful independent supplementary measures of pathology. We have developed an algorithm that extracts atrophy information from individual patient’s 3D MRI scans and assigns a STructural Abnormality iNDex (STAND)-score to the scan based on the degree of atrophy in comparison to patterns extracted from a large library of clinically well characterized AD and CN (cognitively normal) subject’s MRI scans. STAND-scores can be adjusted for demographics to give adjusted-STAND (aSTAND)-scores which are typically > 0 for subjects with abnormal brains. Since histopathological findings are considered to represent the “ground truth”, our objective was to assess the sensitivity of aSTAND-scores to pathological AD staging. This was done by comparing antemortem MRI based aSTAND-scores with post mortem grading of disease severity in 101 subjects who had both antemortem MRI and postmortem Braak neurofibrillary tangle (NFT) staging. We found a rank correlation of 0.62 (p<0.0001) between Braak NFT stage and aSTAND-scores. The results show that optimally extracted information from MRI scans such as STAND-scores accurately capture disease severity and can be used as an independent approximate surrogate marker for in-vivo pathological staging as well as for early identification of AD in individual subjects.
PMCID: PMC3097053  PMID: 18572417
Alzheimer Disease; neurofibrillary tangles; amnestic mild cognitive impairment; Braak NFT stage; magnetic resonance imaging
4.  Very Early Semantic Dementia With Progressive Left≫Right Temporal Lobe Atrophy: An Eight-Year Longitudinal Study 
Archives of neurology  2008;65(12):1659-1663.
Semantic dementia (SD) is a syndrome within the spectrum of frontotemporal lobar degenerations (FTLD) characterized by fluent progressive aphasia (particularly anomia) and loss of word meaning.
To report a unique case of very early semantic dementia with slowly progressive course allowing insights into the early natural history of this disorder.
Case report.
Tertiary care university hospital and academic center.
A 62-year-old female retired teacher presenting with “memory” complaints.
Main Outcome Measures
Clinical course, neuropsychological data, MRI.
The patient was first evaluated when standard neuropsychological measures were normal, but subtle left anterior temporal lobe atrophy was present. Over the follow-up period of eight years, she developed profound anomia and loss of word meaning associated with progressive left anterior temporal lobe atrophy consistent with semantic dementia. In more recent years, anterograde memory impairment as well as mild prosopagnosia have evolved in association with left hippocampal atrophy and subtle atrophy in the homologous gyri of the right anterior temporal lobe. She remains functionally independent despite her current deficits.
Early identification of patients who will develop semantic dementia is difficult and might be missed with standard clinical, neuropsychological, and structural neuroimaging evaluations. Recognition of this relatively rare syndrome is important for early diagnosis and prognostication, and particularly for therapeutic interventions in the future.
PMCID: PMC2902001  PMID: 19064755
frontotemporal lobar degeneration; semantic dementia; MRI; neuropsychology
5.  Abnormal TDP-43 immunoreactivity in AD modifies clinicopathological and radiological phenotype 
Neurology  2008;70(19 Pt 2):1850-1857.
TAR DNA-binding protein 43 (TDP-43) is one of the major disease proteins in frontotemporal lobar degeneration with ubiquitin immunoreactivity. Approximately 1/4 of subjects with pathologically confirmed Alzheimer's disease (AD) have abnormal TDP-43 (abTDP-43) immunoreactivity. The aim of this study was to determine if subjects with pathologically confirmed AD and abTDP-43 immunoreactivity have distinct clinical, neuropsychological, imaging or pathological features compared to subjects with AD without abTDP-43 immunoreactivity.
Eighty-four subjects were identified that had a pathological diagnosis of AD, neuropsychometric testing, and volumetric MRI. Immunohistochemistry for TDP-43 was performed on sections of hippocampus and medial temporal lobe, and positive cases were classified into one of three types. Neuropsychometric data was collated and compared in subjects with and without abTDP-43 immunoreactivity. Voxel-based morphometry was used to assess patterns of gray matter atrophy in subjects with and without abTDP-43 immunoreactivity compared to age and gender matched controls.
Twenty-nine (34%) of the 84 AD subjects had abTDP-43 immunoreactivity. Those with abTDP-43 immunoreactivity were older at onset and death, and performed worse on the Clinical Dementia Rating scale, Mini-Mental State Examination and Boston Naming Test than subjects without abTDP-43 immunoreactivity. Subjects with and without abTDP-43 immunoreactivity had medial temporal and temporoparietal gray matter loss compared to controls; however, those with abTDP-43 immunoreactivity showed greater hippocampal atrophy. Multivariate logistic regression adjusting for age at death demonstrated that hippocampal sclerosis was the only pathological predictor of abTDP-43 immunoreactivity.
The presence of abTDP-43 immunoreactivity is associated with a modified AD clinicopathological and radiological phenotype.
PMCID: PMC2779031  PMID: 18401022
6.  Development of methodology for conducting clinical trials in frontotemporal lobar degeneration 
Brain  2008;131(11):2957-2968.
To design clinical trials for the frontotemporal lobar degenerations (FTLD), knowledge about measurement of disease progression is needed to estimate power and enable the choice of optimal outcome measures. The aim here was to conduct a multicentre, 1 year replica of a clinical trial in patients with one of four FTLD syndromes, behavioural variant frontotemporal dementia (bvFTD), progressive nonfluent aphasia (PNFA), progressive logopenic aphasia (PLA) and semantic dementia (SMD). Patients with one of the four FTLD syndromes were recruited from five academic medical centres over a 2 year period. Standard operationalized diagnostic criteria were used. In addition to clinical inclusion and exclusion criteria, patients were required to exhibit focal frontal, temporal or insular brain atrophy or dysfunction by neuroimaging. Patients underwent neuropsychological, functional, behavioural, neurological and MR imaging assessment at baseline and approximately 12 months later. Potential outcome measures were examined for their rates of floor and ceiling values at baseline and end of study, their mean changes and variances. The neuropsychological tests were combined into two cognitive composites—one for language functions and the other for executive functions. There were 107 patients who underwent baseline assessment and 78 who completed a follow-up assessment within 10–16 months. Two global measures, the FTLD-modified Clinical Dementia Rating (FTLD-modified CDR) and the Clinical Global Impression of Change (CGIC) demonstrated decline in the majority of patients. Several cognitive measures showed negligible floor or ceiling scores either at baseline or follow-up. Scores declined at follow-up in the majority of patients. The cognitive, executive and combined composites were shown to be sensitive to change across all FTLD syndromes. Patients improved at follow-up on the behavioural scales—the Frontal Behavioural Inventory (22%) and the Neuropsychiatric Inventory (28%)—suggesting that these instruments may not be ideal for clinical trial use. It was feasible to recruit FTLD patients in a simulated multi-centre trial. There are several candidate outcome measures—including the FTLD-CDR and the cognitive composites— that could be used in clinical trials across the spectrum of FTLD.
PMCID: PMC2725027  PMID: 18829698
frontotemporal dementia; clinical trials; neuropsychology
7.  Age and apoE associations with complex pathologic features in Alzheimer’s disease 
The risk for Alzheimer’s disease (AD) is influenced by both age and ApoE status. The present study addresses the associations of age and ApoE status on complex pathologic features in AD (n=81) including coexistent cerebrovascular disease (CVD), argyrophilic grain disease (AGD), and Lewy body disease (LBD). The frequency of coexistent cerebrovascular disease increased with increasing age. Age and ApoE status were differentially associated with atherosclerosis, lacunar infarctions, and microvascular pathology. Coexistent Lewy body pathology was negatively associated with age, dropping off abruptly after age 90. The presence of an ApoE ε4 allele was associated with an increased frequency of coexistent LBD. Logistic regression analyses demonstrated both dependent and independent effects of age and ApoE status on the presence of coexistent Lewy body pathology in AD. While the decreasing frequency of LBD in AD after age 90 could be partly accounted for by a lower probability of an ApoE ε4 allele, the independent association with age suggests either 1) a survival effect, 2) decreased incidence with advancing age, or 3) both.
PMCID: PMC2569823  PMID: 18653200
Alzheimer’s disease; cerebrovascular disease; Lewy body disease; argyrophilic grains; age; apolipoprotein E
8.  The Prevalence of Neuropsychiatric Symptoms in Mild Cognitive Impairment and Normal Cognitive Aging: A Population-Based Study 
Archives of general psychiatry  2008;65(10):1193-1198.
Little is known about the population-based prevalence of neuropsychiatric symptoms in mild cognitive impairment (MCI).
To estimate the prevalence of neuropsychiatric symptoms in MCI and normal cognitive aging in a defined population.
Cross-sectional study derived from an ongoing population-based prospective cohort study.
The Mayo Clinic Study of Aging.
We studied a random sample of 1969 non-demented participants out of the target population of 9965 elderly persons residing in Olmsted County on the prevalence date (October 1, 2004). Neuropsychiatric data were available on 319 of the 329 MCI subjects (97.0%) and on 1590 of the 1640 cognitively normal subjects (97.0%).
Neurological, cognitive, and neuropsychiatric data were gathered from the study participants. A classification of normal cognitive aging, MCI, and dementia was adjudicated by an expert consensus panel. Accordingly, 329 subjects were classified as having MCI and the remaining 1640 subjects were classified as cognitively normal.
Main Outcome Measure
The Neuropsychiatric Inventory Questionnaire (NPI-Q).
Multi-variable logistic regression analyses were conducted, after adjusting for age, sex, and education. By taking into consideration both the odds ratio and the frequency of a symptom, the most distinguishing features between the 2 groups were apathy (odds ratio [OR], 4.53; 95% confidence interval [95% CI], 3.11–6.60; P<.001), agitation (OR, 3.60; 95% CI, 2.18–5.92; P<.001), anxiety (OR, 3.00; 95% CI, 2.01–4.48; P<.001), irritability (OR, 2.99; 95% CI, 2.11–4.22; P<.001), and depression (OR, 2.78; 95% CI, 2.06–3.76; P<.001). Delusion had the highest OR (8.12; 95% CI, 2.92–22.60; P<.001); however, it was rare in both cognitively normal subjects (6/1590=0.4%) and MCI (11/319=3.4%). Thus, the population attributable risk for delusion was only 2.62% as compared to 14.60% for apathy.
Non-psychotic symptoms affected approximately 50% of subjects with MCI and 25% of cognitively normal subjects. By contrast, psychotic symptoms were rare.
PMCID: PMC2575648  PMID: 18838636
9.  Age, family history, and memory and future risk for cognitive impairment 
To provide a clinical tool for calculating a patient's future risk for developing cognitive impairment based on age, family history, and AVLT retention.
1019 cognitively normal persons followed for an average of 5 years. 159 participants were eventually diagnosed with cognitive impairment.
Risk of developing cognitive impairment increases with age and family history, but decreases with better memory performance. A nomogram is provided for calculation of relative risk of developing cognitive impairment in combinations of age, family history, and memory performance.
These results enhance clinicians' ability to provide information to a patient about risk of cognitive impairment.
PMCID: PMC2750804  PMID: 18608678
cognitive decline; dementia; risk; AVLT; family history
10.  Progressive aphasia secondary to Alzheimer disease pathology: A clinicopathologic and MRI study 
Neurology  2008;70(1):25-34.
The pathology causing progressive aphasia is typically a variant of frontotemporal lobar degeneration, especially with ubiquitin-positive-inclusions (FTLD-U). Less commonly the underlying pathology is Alzheimer disease (AD).
To compare clinicopathological and MRI features of subjects with progressive aphasia and AD pathology, to subjects with aphasia and FTLD-U pathology, and subjects with typical AD.
We identified 5 subjects with aphasia and AD pathology and 5 with aphasia and FTLD-U pathology with an MRI from a total of 216 aphasia subjects. Ten subjects with typical AD clinical features and AD pathology were also identified. All subjects with AD pathology underwent pathological re-analysis with TDP-43 immunohistochemistry. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aphasia cases with AD pathology, aphasia cases with FTLD-U, and typical AD cases with AD pathology, compared to a normal control group.
All aphasic subjects had fluent speech output. However, those with AD pathology had better processing speed than those with FTLD-U pathology. Immunohistochemistry with TDP-43 antibodies was negative. VBM revealed grey matter atrophy predominantly in the temporoparietal cortices with notable sparing of the hippocampus in the aphasia with AD subjects. In comparison, the aphasic subjects with FTLD-U showed sparing of the parietal lobe. Typical AD subjects showed temporoparietal and hippocampal atrophy.
A temporoparietal pattern of atrophy on MRI in patients with progressive fluent aphasia and relatively preserved processing speed is suggestive of underlying AD pathology rather than FTLD-U.
PMCID: PMC2749307  PMID: 18166704
Primary progressive aphasia; Progressive non-fluent aphasia; Logopenic progressive aphasia; frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes; Voxel based morphometry
11.  Refining FTDP-17: Introducing FTDP-17(MAPT) and FTDP-17(PGRN) 
Archives of neurology  2008;65(4):460-464.
Frontotemporal dementia and parkinsonism (FTDP) is a major neurodegenerative syndrome, particularly for those with symptoms beginning before age 65. A spectrum of degenerative disorders can present as sporadic or familial FTDP. Mutations in the gene encoding the microtubule associated protein tau (MAPT) on chromosome 17 have been found in many kindreds with familial FTDP. Several other kindreds with FTDP had been linked to chromosome 17, but they had ubiquitin-positive inclusions rather than tauopathy pathology, and no mutations in MAPT. This conundrum was solved over this past year with the identification of mutations in the gene encoding progranulin (PGRN), which is only 1.7 Mb centromeric to MAPT on chromosome 17. In this review, we compare and contrast the demographic, clinical, radiologic, neuropathologic, genetic, and pathophysiologic features in patients with FTDP linked to mutations in MAPT and PGRN, highlighting the many similarities but also a few important differences. The findings provide an intriguing oddity of nature in which two genes can cause a similar phenotype through apparently different mechanisms yet reside so near to each other on the same chromosome.
PMCID: PMC2746630  PMID: 18413467
frontotemporal dementia; parkinsonism; progranulin; tau; PGRN; MAPT
12.  Validation of the Neuropathologic Criteria of the Third Consortium for Dementia with Lewy Bodies for Prospectively Diagnosed Cases 
There is limited information on the validity of the pathological criteria of the Third Consortium on Dementia with Lewy bodies (CDLB) and none based upon prospectively diagnosed cases. In this study the core clinical features of dementia with Lewy bodies (DLB) and the suggestive clinical feature of rapid eye movement sleep behavior disorder were assessed using a battery of standardized clinical instruments in 76 patients with the clinical diagnosis of either DLB or Alzheimer disease. At autopsy, 29 patients had high-likelihood, 17 had intermediate-likelihood and 6 had low-likelihood DLB pathology. The frequency of core clinical features and the accuracy of the clinical diagnosis of probable DLB were significantly greater in high-likelihood than in low-likelihood cases. This is consistent with the concept that the DLB clinical syndrome is directly related to Lewy body pathology and inversely related to Alzheimer pathology. Thus, the Third CDLB neuropathological criteria scheme performed reasonably well and is useful for estimating the likelihood of the premortem DLB syndrome based upon postmortem findings. In view of differences in the frequency of clinically probable DLB in cases with Braak NFT stages V (90%) and VI (20%) and diffuse cortical Lewy bodies, a possible modification of the scheme considering cases with NFT stage VI to be low-likelihood DLB is suggested.
PMCID: PMC2745052  PMID: 18596548
Alzheimer disease; α-synuclein; Clinicopathologic correlation; Diagnostic criteria; Dementia with Lewy bodies; Prospective study; REM behavior disorder
13.  Hippocampal Volumes, Proton Magnetic Resonance Spectroscopy Metabolites, and Cerebrovascular Disease in Mild Cognitive Impairment Subtypes 
Archives of neurology  2008;65(12):1621-1628.
Although a majority of patients with amnestic mild cognitive impairment (aMCI) progress to Alzheimer disease, the natural history of nonamnestic MCI (naMCI) is less clear. Noninvasive imaging surrogates for underlying pathological findings in MCI would be clinically useful for identifying patients who may benefit from disease-specific treatments at the prodromal stage of dementia.
To determine the characteristic magnetic resonance imaging (MRI) and proton MR spectroscopy (1H MRS) profiles of MCI subtypes.
Case-control study.
Community-based sample at a tertiary referral center.
Ninety-one patients with single-domain aMCI, 32 patients with multiple-domain aMCI, 20 patients with single- or multiple-domain naMCI, and 100 cognitively normal elderly subjects frequency-matched by age and sex.
Main Outcome Measures
Posterior cingulate gyrus 1H MRS metabolite ratios, hippocampal volumes, and cerebrovascular disease on MRI.
Patients with single-domain aMCI were characterized by small hippocampal volumes and elevated ratios of myo-inositol to creatine levels. Patients with naMCI on average had normal hippocampal volumes and 1H MRS metabolite ratios, but a greater proportion (3 of 20 patients [15%]) had cortical infarctions compared with patients with single-domain aMCI (6 of 91 [7%]). For characterization of MCI subtypes, 1H MRS and structural MRI findings were complementary.
The MRI and 1H MRS findings in singledomain aMCI are consistent with a pattern similar to that of Alzheimer disease. Absence of this pattern on average in patients with naMCI suggests that cerebrovascular disease and other neurodegenerative diseases may be contributing to the cognitive impairment in many individuals with naMCI.
PMCID: PMC2743393  PMID: 19064749
14.  Alzheimer Disease: Postmortem Neuropathologic Correlates of Antemortem 1H MR Spectroscopy Metabolite Measurements 
Radiology  2008;248(1):210-220.
To determine the neuropathologic correlates of antemortem hydrogen 1 (1H) magnetic resonance (MR) spectroscopy metabolite measurements in subjects with Alzheimer disease (AD)-type pathology.
Materials and Methods
This study was approved by the institutional review board and was compliant with HIPAA regulations. Informed consent was obtained from each subject. The authors identified 54 subjects who underwent antemortem 1H MR spectroscopy and were clinically healthy or had AD-type pathology with low to high likelihood of AD according to National Institute on Aging–Reagan neuropathologic criteria at autopsy. They investigated the associations between 1H MR spectroscopy metabolite measurements and Braak neurofibrillary tangle stage (Braak stage), neuritic plaque score, and AD likelihood, with adjustments for subject age, subject sex, and time between 1H MR spectroscopy and death.
Decreases in N-acetylaspartate–to-creatine ratio, an index of neuronal integrity, and increases in myo-inositol–to-creatine ratio were associated with higher Braak stage, higher neuritic plaque score, and greater likelihood of AD. The N-acetylaspartate–to–myo-inositol ratio proved to be the strongest predictor of the pathologic likelihood of AD. The strongest association observed was that between N-acetylaspartate–to–myo-inositol ratio and Braak stage (RN2 = 0.47, P < .001).
Antemortem 1H MR spectroscopy metabolite changes correlated with AD-type pathology seen at autopsy. The study findings validated 1H MR spectroscopy metabolite measurements against the neuropathologic criteria for AD, and when combined with prior longitudinal 1H MR spectroscopy findings, indicate that these measurements could be used as biomarkers for disease progression in clinical trials.
PMCID: PMC2735577  PMID: 18566174
15.  Beta-amyloid burden is not associated with rates of brain atrophy 
Annals of neurology  2008;63(2):204-212.
To test the hypothesis that beta-amyloid (Aβ) burden is associated with rates of brain atrophy.
Forty-five subjects who had been prospectively studied, died, and had an autopsy diagnosis of low, intermediate, or high probability of Alzheimer's disease that had two volumetric head MRI scans were identified. Compact, as well as total (compact + diffuse) Aβ burden was measured using a computerized image analyzer with software program to detect the proportion of grey matter occupied by Aβ. Visual ratings of Aβ burden were also performed. The boundary-shift integral (BSI) was used to calculate change over time in whole brain and ventricular volume. All BSI results were annualized by adjusting for scan interval. Demographics, cognitive measures, clinical diagnoses, apolipoprotein E genotype, neurofibrillary tangle pathology, and vascular lesion burden were determined.
There was no correlation between compact or total Aβ burden, or visual Aβ ratings, and rates of brain loss or ventricular expansion in all subjects. However, significant correlations were observed between rates of brain loss and age, Braak stage, and change over time in cognitive measures. These features also correlated with rates of ventricular expansion. The rates of brain loss and ventricular expansion were greater in demented compared to non-demented subjects.
These findings suggest that rate of brain volume loss is not determined by the amount of insoluble Aβ in the grey matter.
PMCID: PMC2735194  PMID: 17894374
16.  11C PiB and Structural MRI Provide Complementary Information in Imaging of AD and Amnestic MCI 
Brain : a journal of neurology  2008;131(Pt 3):665-680.
Twenty cognitively normal (CN), 17 amnestic mild cognitive impairment (aMCI), and 8 subjects with probable Alzheimer's disease (AD) were imaged with both magnetic resonance imaging (MRI) and the amyloid labeling ligand 11C Pittsburgh Compound B (PiB). PiB retention was quantified as the ratio of uptake in cortical regions of interest (ROIs) to the uptake in the cerebellar ROI in images acquired 40-60 minute post injection. A global cortical PiB retention summary measure was derived from six cortical ROIs. Statistical parametric mapping (SPM) and voxel-based morphometry (VBM) were used to evaluate PiB retention and grey matter loss on a 3D voxel-wise basis.
AD subjects had high global cortical PiB retention and low hippocampal volume; most CN subjects had low PiB retention and high hippocampal volume; and on average aMCI subjects were intermediate on both PiB and hippocampal volume. A target-to-cerebellar ratio of 1.5 was used to designate subjects as high vs. low PiB cortical retention. All AD subjects fell above this ratio as did 6/20 CN subjects and 9/17 MCI subjects, indicating bi-modal PiB retention in CN and aMCI. Interestingly, we found no consistent differences in learning and memory performance between high vs. low PiB CN subjects or high vs. low aMCI subjects.
The SPM/VBM voxel-wise comparisons of AD vs. CN subjects provided complementary information in that clear and meaningful similarities and differences in topographic distribution of amyloid deposition and grey matter loss were shown. The frontal lobes had high PiB retention with little grey matter loss. Anteromedial temporal areas had low PiB retention with significant grey matter loss. Lateral temporoparietal association cortex displayed both significant PiB retention and grey matter loss.
A voxel-wise SPM conjunction analysis of PiB uptake revealed that subjects with high PiB retention (high CN, high aMCI, and AD) shared a common PiB retention topographic pattern regardless of clinical category, and this PiB topographic pattern matched that of amyloid plaque distribution that has been established in autopsy studies of AD.
Both global cortical PiB retention and hippocampal volumes demonstrated significant correlation in the expected direction with cognitive testing performance; however, correlations were stronger with MRI than PiB. Pair-wise inter-group diagnostic separation was significant for all group-wise pairs for both PiB and hippocampal volume with the exception of CN vs. aMCI which was not significant for PiB. PiB and MRI provided complementary information such that clinical diagnostic classification with both, in combination, was superior to either alone.
PMCID: PMC2730157  PMID: 18263627
Alzheimer's disease; Mild Cognitive Impairment; Pittsburgh Compound B; amyloid imaging; Magnetic Resonance Imaging; hippocampus
17.  Duration and Severity of Diabetes Are Associated with Mild Cognitive Impairment 
Archives of neurology  2008;65(8):1066-1073.
It remains unknown whether diabetes mellitus is a risk factor for mild cognitive impairment (MCI).
To investigate the association of diabetes mellitus with MCI using a population-based case-control design.
Design, Setting, and Participants
Our study was conducted in subjects aged 70 through 89 years on October 1, 2004, who were randomly selected from the Olmsted County, MN, population.
Main Outcome Measure
We administered to all participants the Clinical Dementia Rating Scale, a neurological exam, and a neuropsychological evaluation including 9 tests in 4 cognitive domains to diagnose normal cognition, MCI, or dementia. We assessed history of diabetes, diabetes treatment, and complications by interview and we measured fasting blood glucose. History of diabetes was also confirmed using a medical records-linkage system.
We compared 329 patients with MCI to 1640 subjects free of MCI and of dementia. The frequency of diabetes was similar in subjects with MCI (20.1%) and in subjects without MCI (17.7%; odds ratio [OR], 1.16; 95% confidence interval [CI], 0.85-1.57). However, MCI was associated with onset of diabetes before age 65 years (OR, 2.20; 95% CI, 1.29-3.73), diabetes duration ≥10 years (OR, 1.76; 95% CI, 1.16-2.68), treatment with insulin (OR, 2.01; 95% CI, 1.22-3.31), and presence of complications (OR, 1.80; 95% CI, 1.13-2.89) after adjustment for age, sex, and education. Analyses using alternative definitions of diabetes yielded consistent findings.
These findings suggest an association between earlier onset, longer duration, and greater severity of diabetes and MCI.
PMCID: PMC2630223  PMID: 18695056
18.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis 
PLoS Genetics  2008;4(9):e1000193.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.
Author Summary
The abnormal accumulation of disease proteins in neuronal cells of the brain is a characteristic feature of many neurodegenerative diseases. Rare mutations in the genes that encode the accumulating proteins have been identified in these disorders and are crucial for the development of cell and animal models used to study neurodegeneration. Recently, the TAR DNA-binding protein 43 (TDP-43) was identified as the disease accumulating protein in patients with frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) and in amyotrophic lateral sclerosis (ALS). TDP-43 was also found in the brains of 20–30% of patients with Alzheimer's disease (AD). Here, we evaluated whether mutations in TDP-43 cause disease in a cohort of 296 patients presenting with FTLD, ALS or AD. We identified three missense mutations in three out of 92 familial ALS patients (3.3%), and no mutations in AD or FTLD patients. All the identified mutations clustered in exon 6, which codes for a highly conserved region in the C-terminal part of the TDP-43 protein, which is known to be involved in the interaction of TDP-43 with other proteins. We conclude that mutations in TDP-43 are a rare cause of familial ALS, but so far are not found in other neurodegenerative diseases.
PMCID: PMC2527686  PMID: 18802454
19.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia 
Human Molecular Genetics  2008;17(23):3631-3642.
Loss-of-function mutations in progranulin (GRN) cause ubiquitin- and TAR DNA-binding protein 43 (TDP-43)-positive frontotemporal dementia (FTLD-U), a progressive neurodegenerative disease affecting ∼10% of early-onset dementia patients. Here we expand the role of GRN in FTLD-U and demonstrate that a common genetic variant (rs5848), located in the 3′-untranslated region (UTR) of GRN in a binding-site for miR-659, is a major susceptibility factor for FTLD-U. In a series of pathologically confirmed FTLD-U patients without GRN mutations, we show that carriers homozygous for the T-allele of rs5848 have a 3.2-fold increased risk to develop FTLD-U compared with homozygous C-allele carriers (95% CI: 1.50–6.73). We further demonstrate that miR-659 can regulate GRN expression in vitro, with miR-659 binding more efficiently to the high risk T-allele of rs5848 resulting in augmented translational inhibition of GRN. A significant reduction in GRN protein was observed in homozygous T-allele carriers in vivo, through biochemical and immunohistochemical methods, mimicking the effect of heterozygous loss-of-function GRN mutations. In support of these findings, the neuropathology of homozygous rs5848 T-allele carriers frequently resembled the pathological FTLD-U subtype of GRN mutation carriers. We suggest that the expression of GRN is regulated by miRNAs and that common genetic variability in a miRNA binding-site can significantly increase the risk for FTLD-U. Translational regulation by miRNAs may represent a common mechanism underlying complex neurodegenerative disorders.
PMCID: PMC2581433  PMID: 18723524
20.  The Mayo Clinic Study of Aging: Design and Sampling, Participation, Baseline Measures and Sample Characteristics 
Neuroepidemiology  2008;30(1):58-69.
The objective of this study was to establish a prospective population-based cohort to investigate the prevalence, incidence and risk factors for mild cognitive impairment (MCI) and dementia.
The Olmsted County, Minn., population, aged 70–89 years on October 1, 2004, was enumerated using the Rochester Epidemiology Project. Eligible subjects were randomly selected and invited to participate. Participants underwent a comprehensive in-person evaluation including the Clinical Dementia Rating Scale, a neurological evaluation and neuropsychological testing. A consensus diagnosis of normal cognition, MCI or dementia was made by a panel using previously published criteria. A subsample of subjects was studied via telephone interview.
Four hundred and two subjects with dementia were identified from a detailed review of their medical records but were not contacted. At baseline, we successfully evaluated 703 women aged 70–79 years, 769 women aged 80–89 years, 730 men aged 70–79 years and 517 men aged 80–89 years (total n = 2,719). Among the participants, 2,050 subjects were evaluated in person and 669 via telephone.
Strengths of the study are that the subjects were randomly selected from a defined population, the majority of the subjects were examined in person, and MCI was defined using published criteria. Here, we report the design and sampling, participation, baseline measures and sample characteristics.
PMCID: PMC2821441  PMID: 18259084
Cognitive impairment; Prevalence; Incidence; Risk factors; Cohort studies; Data collection instruments

Results 1-20 (20)