PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal 
Neurology  2014;82(4):317-325.
Objective:
To estimate rates of progression from mild cognitive impairment (MCI) to dementia and of reversion from MCI to being cognitively normal (CN) in a population-based cohort.
Methods:
Participants (n = 534, aged 70 years and older) enrolled in the prospective Mayo Clinic Study of Aging were evaluated at baseline and every 15 months to identify incident MCI or dementia.
Results:
Over a median follow-up of 5.1 years, 153 of 534 participants (28.7%) with prevalent or incident MCI progressed to dementia (71.3 per 1,000 person-years). The cumulative incidence of dementia was 5.4% at 1 year, 16.1% at 2, 23.4% at 3, 31.1% at 4, and 42.5% at 5 years. The risk of dementia was elevated in MCI cases (hazard ratio [HR] 23.2, p < 0.001) compared with CN subjects. Thirty-eight percent (n = 201) of MCI participants reverted to CN (175.0/1,000 person-years), but 65% subsequently developed MCI or dementia; the HR was 6.6 (p < 0.001) compared with CN subjects. The risk of reversion was reduced in subjects with an APOE ε4 allele (HR 0.53, p < 0.001), higher Clinical Dementia Rating Scale–Sum of Boxes (HR 0.56, p < 0.001), and poorer cognitive function (HR 0.56, p < 0.001). The risk was also reduced in subjects with amnestic MCI (HR 0.70, p = 0.02) and multidomain MCI (HR 0.61, p = 0.003).
Conclusions:
MCI cases, including those who revert to CN, have a high risk of progressing to dementia. This suggests that diagnosis of MCI at any time has prognostic value.
doi:10.1212/WNL.0000000000000055
PMCID: PMC3929198  PMID: 24353333
2.  Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies 
Neurology  2013;81(23):2032-2038.
Objective:
To determine the rate of progression of mild cognitive impairment (MCI) to dementia with Lewy bodies (DLB).
Methods:
We followed 337 patients with MCI in the Mayo Alzheimer's Disease Research Center (range 2–12 years). Competing risks survival models were used to examine the rates of progression to clinically probable DLB and Alzheimer disease (AD). A subset of patients underwent neuropathologic examination.
Results:
In this clinical cohort, 116 remained as MCI, while 49 progressed to probable DLB, 162 progressed to clinically probable AD, and 10 progressed to other dementias. Among nonamnestic MCI, progression rate to probable DLB was 20 events per 100 person-years and to probable AD was 1.6 per 100 person-years. Among amnestic MCI, progression rate to probable AD was 17 events per 100 person-years, and to DLB was 1.5 events per 100 person-years. In 88% of those who developed probable DLB, the baseline MCI diagnosis included attention and/or visuospatial deficits. Those who developed probable DLB were more likely to have baseline daytime sleepiness and subtle parkinsonism. In 99% of the clinically probable AD group, the baseline MCI diagnosis included memory impairment. Neuropathologic confirmation was obtained in 24 of 30 of those with clinically probable AD, and in 14 of 18 of those with clinically probable DLB.
Conclusion:
In a clinical sample, patients with nonamnestic MCI were more likely to develop DLB, and those with amnestic MCI were more likely to develop probable AD.
doi:10.1212/01.wnl.0000436942.55281.47
PMCID: PMC3854825  PMID: 24212390
3.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
Objective:
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Methods:
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
Results:
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Conclusion:
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
doi:10.1212/01.wnl.0000435299.57153.f0
PMCID: PMC3812105  PMID: 24107861
4.  Risk factors for dementia with Lewy bodies 
Neurology  2013;81(9):833-840.
Objective:
To determine the risk factors associated with dementia with Lewy bodies (DLB).
Methods:
We identified 147 subjects with DLB and sampled 2 sex- and age-matched cognitively normal control subjects for each case. We also identified an unmatched comparison group of 236 subjects with Alzheimer disease (AD). We evaluated 19 candidate risk factors in the study cohort.
Results:
Compared with controls, subjects with DLB were more likely to have a history of anxiety (odds ratio; 95% confidence interval) (7.4; 3.5–16; p < 0.0001), depression (6.0; 3.7–9.5; p < 0.0001), stroke (2.8; 1.3–6.3; p = 0.01), a family history of Parkinson disease (PD) (4.6; 2.5–8.6; p < 0.0001), and carry APOE ε4 alleles (2.2; 1.5–3.3; p < 0.0001), but less likely to have had cancer (0.44; 0.27–0.70; p = 0.0006) or use caffeine (0.29; 0.14–0.57; p < 0.0001) with a similar trend for alcohol (0.65; 0.42–1.0; p = 0.0501). Compared with subjects with AD, subjects with DLB were younger (72.5 vs 74.9 years, p = 0.021) and more likely to be male (odds ratio; 95% confidence interval) (5.3; 3.3–8.5; p < 0.0001), have a history of depression (4.3; 2.4–7.5; p < 0.0001), be more educated (2.5; 1.1–5.6; p = 0.031), have a positive family history of PD (5.0; 2.4–10; p < 0.0001), have no APOE ε4 alleles (0.61; 0.40–0.93; p = 0.02), and to have had an oophorectomy before age 45 years (7.6; 1.5–39; p = 0.015).
Conclusion:
DLB risk factors are an amalgam of those for AD and PD. Smoking and education, which have opposing risk effects on AD and PD, are not risk factors for DLB; however, depression and low caffeine intake, both risk factors for AD and PD, increase risk of DLB more strongly than in either.
doi:10.1212/WNL.0b013e3182a2cbd1
PMCID: PMC3908463  PMID: 23892702
5.  Restless legs syndrome and daytime sleepiness are prominent in myotonic dystrophy type 2 
Neurology  2013;81(2):157-164.
Objectives:
Although sleep disturbances are common in myotonic dystrophy type 1 (DM1), sleep disturbances in myotonic dystrophy type 2 (DM2) have not been well-characterized. We aimed to determine the frequency of sleep disturbances in DM2.
Methods:
We conducted a case-control study of 54 genetically confirmed DM2 subjects and 104 medical controls without DM1 or DM2, and surveyed common sleep disturbances, including symptoms of probable restless legs syndrome (RLS), excessive daytime sleepiness (EDS), sleep quality, fatigue, obstructive sleep apnea (OSA), probable REM sleep behavior disorder (pRBD), and pain. Thirty patients with DM2 and 43 controls responded to the survey. Group comparisons with parametric statistical tests and multiple linear and logistic regression analyses were conducted for the dependent variables of EDS and poor sleep quality.
Results:
The mean ages of patients with DM2 and controls were 63.8 and 64.5 years, respectively. Significant sleep disturbances in patients with DM2 compared to controls included probable RLS (60.0% vs 14.0%, p < 0.0001), EDS (p < 0.001), sleep quality (p = 0.02), and fatigue (p < 0.0001). EDS and fatigue symptoms were independently associated with DM2 diagnosis (p < 0.01) after controlling for age, sex, RLS, and pain scores. There were no group differences in OSA (p = 0.87) or pRBD (p = 0.12) scores.
Conclusions:
RLS, EDS, and fatigue are frequent sleep disturbances in patients with DM2, while OSA and pRBD symptoms are not. EDS was independently associated with DM2 diagnosis, suggesting possible primary CNS hypersomnia mechanisms. Further studies utilizing objective sleep measures are needed to better characterize sleep comorbidities in DM2.
doi:10.1212/WNL.0b013e31829a340f
PMCID: PMC3770170  PMID: 23749798
6.  MRI and MRS predictors of mild cognitive impairment in a population-based sample 
Neurology  2013;81(2):126-133.
Objective:
To investigate MRI and proton magnetic resonance spectroscopy (MRS) predictors of mild cognitive impairment (MCI) in cognitively normal older adults.
Methods:
Subjects were cognitively normal older adults (n = 1,156) who participated in the population-based Mayo Clinic Study of Aging MRI/MRS study from August 2005 to December 2010 and had at least one annual clinical follow-up. Single-voxel MRS was performed from the posterior cingulate gyri, and hippocampal volumes and white matter hyperintensity volumes were quantified using automated methods. Brain infarcts were assessed on MRI. Cox proportional hazards regression, with age as the time scale, was used to assess the effect of MRI and MRS markers on the risk of progression from cognitively normal to MCI. Linear mixed-effects models were used to assess the effect of MRI and MRS markers on cognitive decline.
Results:
After a median follow-up of 2.8 years, 214 participants had progressed to MCI or dementia (estimated incidence rate = 6.1% per year; 95% confidence interval = 5.3%–7.0%). In univariable modeling, hippocampal volume, white matter hyperintensity volume, and N-acetylaspartate/myo-inositol were significant predictors of MCI in cognitively normal older adults. In multivariable modeling, only decreased hippocampal volume and N-acetylaspartate/myo-inositol were independent predictors of MCI. These MRI/MRS predictors of MCI as well as infarcts were associated with cognitive decline (p < 0.05).
Conclusion:
Quantitative MRI and MRS markers predict progression to MCI and cognitive decline in cognitively normal older adults. MRS may contribute to the assessment of preclinical dementia pathologies by capturing neurodegenerative changes that are not detected by hippocampal volumetry.
doi:10.1212/WNL.0b013e31829a3329
PMCID: PMC3770173  PMID: 23761624
7.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations 
Neurology  2013;81(15):1332-1341.
Objective:
To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
Methods:
A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
Results:
We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
Conclusions:
Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
doi:10.1212/WNL.0b013e3182a8250c
PMCID: PMC3806926  PMID: 24027057
8.  Brain β-amyloid load approaches a plateau 
Neurology  2013;80(10):890-896.
Objective:
To model the temporal trajectory of β-amyloid accumulation using serial amyloid PET imaging.
Methods:
Participants, aged 70–92 years, were enrolled in either the Mayo Clinic Study of Aging (n = 246) or the Mayo Alzheimer's Disease Research Center (n = 14). All underwent 2 or more serial amyloid PET examinations. There were 205 participants classified as cognitively normal and 55 as cognitively impaired (47 mild cognitive impairment and 8 Alzheimer dementia). We measured baseline amyloid PET-relative standardized uptake values (SUVR) and, for each participant, estimated a slope representing their annual amyloid accumulation rate. We then fit regression models to predict the rate of amyloid accumulation given baseline amyloid SUVR, and evaluated age, sex, clinical group, and APOE as covariates. Finally, we integrated the amyloid accumulation rate vs baseline amyloid PET SUVR association to an amyloid PET SUVR vs time association.
Results:
Rates of amyloid accumulation were low at low baseline SUVR. Rates increased to a maximum at baseline SUVR around 2.0, above which rates declined—reaching zero at baseline SUVR above 2.7. The rate of amyloid accumulation as a function of baseline SUVR had an inverted U shape. Integration produced a sigmoid curve relating amyloid PET SUVR to time. The average estimated time required to travel from an SUVR of 1.5–2.5 is approximately 15 years.
Conclusion:
This roughly 15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.
doi:10.1212/WNL.0b013e3182840bbe
PMCID: PMC3653215  PMID: 23446680
9.  Indicators of amyloid burden in a population-based study of cognitively normal elderly 
Neurology  2012;79(15):1570-1577.
Objectives:
Secondary prevention trials in subjects with preclinical Alzheimer disease may require documentation of brain amyloidosis. The identification of inexpensive and noninvasive screening variables that can identify individuals who have significant amyloid accumulation would reduce screening costs.
Methods:
A total of 483 cognitively normal (CN) individuals, aged 70–92 years, from the population-based Mayo Clinic Study of Aging, underwent Pittsburgh compound B (PiB)–PET imaging. Logistic regression determined whether age, sex, APOE genotype, family history, or cognitive performance was associated with odds of a PiB retention ratio >1.4 and >1.5. Area under the receiver operating characteristic curve (AUROC) evaluated the discrimination between PiB-positive and -negative subjects. For each characteristic, we determined the number needed to screen in each age group (70–79 and 80–89) to identify 100 participants with PiB >1.4 or >1.5.
Results:
A total of 211 (44%) individuals had PiB >1.4 and 151 (31%) >1.5. In univariate and multivariate models, discrimination was modest (AUROC ∼0.6–0.7). Multivariately, age and APOE best predicted odds of PiB >1.4 and >1.5. Subjective memory complaints were similar to cognitive test performance in predicting PiB >1.5. Indicators of PiB positivity varied with age. Screening APOE ε4 carriers alone reduced the number needed to screen to enroll 100 subjects with PIB >1.5 by 48% in persons aged 70–79 and 33% in those aged 80–89.
Conclusions:
Age and APOE genotype are useful predictors of the likelihood of significant amyloid accumulation, but discrimination is modest. Nonetheless, these results suggest that inexpensive and noninvasive measures could significantly reduce the number of CN individuals needed to screen to enroll a given number of amyloid-positive subjects.
doi:10.1212/WNL.0b013e31826e2696
PMCID: PMC3475629  PMID: 22972644
10.  Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies 
Neurology  2012;79(6):553-560.
Objective:
To determine the association between the focal atrophy measures on antemortem MRI and postmortem neuropathologic classification of dementia with Lewy bodies (DLB) using the Third Report of the DLB Consortium criteria.
Methods:
We retrospectively identified 56 subjects who underwent antemortem MRI and had Lewy body (LB) pathology at autopsy. Subjects were pathologically classified as high (n = 25), intermediate (n = 22), and low likelihood DLB (n = 9) according to the Third Report of the DLB Consortium criteria. We included 2 additional pathologic comparison groups without LBs: one with low likelihood Alzheimer disease (AD) (control; n = 27) and one with high likelihood AD (n = 33). The associations between MRI-based volumetric measurements and the pathologic classification of DLB were tested with analysis of covariance by adjusting for age, sex, and MRI-to-death interval.
Results:
Antemortem hippocampal and amygdalar volumes increased from low to intermediate to high likelihood DLB (p < 0.001, trend test). Smaller hippocampal and amygdalar volumes were associated with higher Braak neurofibrillary tangle stage (p < 0.001). Antemortem dorsal mesopontine gray matter (GM) atrophy was found in those with high likelihood DLB compared with normal control subjects (p = 0.004) and those with AD (p = 0.01). Dorsal mesopontine GM volume decreased from low to intermediate to high likelihood DLB (p = 0.01, trend test).
Conclusion:
Antemortem hippocampal and amygdalar volumes increase and dorsal mesopontine GM volumes decrease in patients with low to high likelihood DLB according to the Third Report of the DLB Consortium criteria. Patients with high likelihood DLB typically have normal hippocampal volumes but have atrophy in the dorsal mesopontine GM nuclei.
doi:10.1212/WNL.0b013e31826357a5
PMCID: PMC3413765  PMID: 22843258
11.  Abnormal TDP-43 immunoreactivity in AD modifies clinicopathological and radiological phenotype 
Neurology  2008;70(19 Pt 2):1850-1857.
Background
TAR DNA-binding protein 43 (TDP-43) is one of the major disease proteins in frontotemporal lobar degeneration with ubiquitin immunoreactivity. Approximately 1/4 of subjects with pathologically confirmed Alzheimer's disease (AD) have abnormal TDP-43 (abTDP-43) immunoreactivity. The aim of this study was to determine if subjects with pathologically confirmed AD and abTDP-43 immunoreactivity have distinct clinical, neuropsychological, imaging or pathological features compared to subjects with AD without abTDP-43 immunoreactivity.
Methods
Eighty-four subjects were identified that had a pathological diagnosis of AD, neuropsychometric testing, and volumetric MRI. Immunohistochemistry for TDP-43 was performed on sections of hippocampus and medial temporal lobe, and positive cases were classified into one of three types. Neuropsychometric data was collated and compared in subjects with and without abTDP-43 immunoreactivity. Voxel-based morphometry was used to assess patterns of gray matter atrophy in subjects with and without abTDP-43 immunoreactivity compared to age and gender matched controls.
Results
Twenty-nine (34%) of the 84 AD subjects had abTDP-43 immunoreactivity. Those with abTDP-43 immunoreactivity were older at onset and death, and performed worse on the Clinical Dementia Rating scale, Mini-Mental State Examination and Boston Naming Test than subjects without abTDP-43 immunoreactivity. Subjects with and without abTDP-43 immunoreactivity had medial temporal and temporoparietal gray matter loss compared to controls; however, those with abTDP-43 immunoreactivity showed greater hippocampal atrophy. Multivariate logistic regression adjusting for age at death demonstrated that hippocampal sclerosis was the only pathological predictor of abTDP-43 immunoreactivity.
Conclusions
The presence of abTDP-43 immunoreactivity is associated with a modified AD clinicopathological and radiological phenotype.
doi:10.1212/01.wnl.0000304041.09418.b1
PMCID: PMC2779031  PMID: 18401022
12.  DWI PREDICTS FUTURE PROGRESSION TO ALZHEIMER’S DISEASE IN AMNESTIC MILD COGNITIVE IMPAIRMENT 
Neurology  2005;64(5):902-904.
This study tests if measures of hippocampal water diffusivity at baseline can predict future progression to Alzheimer’s Disease (AD) in amnestic mild cognitive impairment (aMCI). Higher baseline hippocampal diffusivity was associated with a greater hazard of progression to AD in aMCI (p=0.002). MR diffusion weighted imaging (DWI) may help identify patients with aMCI who will progress to AD as well or better than structural MRI measures of hippocampal atrophy.
doi:10.1212/01.WNL.0000153076.46126.E9
PMCID: PMC2771335  PMID: 15753434
13.  1H MR SPECTROSCOPY IN COMMON DEMENTIAS 
Neurology  2004;63(8):1393-1398.
Objective
To determine the 1H MR spectroscopic (MRS) findings and inter-group differences among common dementias: Alzheimer's disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD).
Methods
We consecutively recruited 206 normal elderly, 121 patients with AD, 41 with FTLD, 20 with DLB, and 8 with VaD. We evaluated the 1H MRS metabolite ratio changes in common dementias with respect to normal, and also differences among the common dementias.
Results
N-acetylaspartate/Creatine (NAA/Cr) was lower than normal in patients with AD, FTLD, and VaD. Myo-inositol (mI)/Cr was higher than normal in patients with AD and FTLD. Choline (Cho)/Cr was higher than normal in patients with, AD, FTLD, and DLB. There were no metabolite differences between patients with AD and FTLD, nor between patients with DLB and VaD. NAA /Cr was lower in patients with AD and FTLD than DLB. MI /Cr was higher in patients with AD and FTLD than VaD. MI /Cr was also higher in patients with FTLD than DLB.
Conclusions
NAA/Cr levels are decreased in dementias that are characterized by neuron loss such as AD, FTLD, and VaD. MI/Cr levels are elevated in dementias that are pathologically characterized by gliosis such as AD and FTLD. Cho/Cr levels are elevated in dementias that are characterized by a profound cholinergic deficit such as AD and DLB.
PMCID: PMC2766798  PMID: 15505154
14.  Progressive aphasia secondary to Alzheimer disease pathology: A clinicopathologic and MRI study 
Neurology  2008;70(1):25-34.
Background
The pathology causing progressive aphasia is typically a variant of frontotemporal lobar degeneration, especially with ubiquitin-positive-inclusions (FTLD-U). Less commonly the underlying pathology is Alzheimer disease (AD).
Objective
To compare clinicopathological and MRI features of subjects with progressive aphasia and AD pathology, to subjects with aphasia and FTLD-U pathology, and subjects with typical AD.
Methods
We identified 5 subjects with aphasia and AD pathology and 5 with aphasia and FTLD-U pathology with an MRI from a total of 216 aphasia subjects. Ten subjects with typical AD clinical features and AD pathology were also identified. All subjects with AD pathology underwent pathological re-analysis with TDP-43 immunohistochemistry. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aphasia cases with AD pathology, aphasia cases with FTLD-U, and typical AD cases with AD pathology, compared to a normal control group.
Results
All aphasic subjects had fluent speech output. However, those with AD pathology had better processing speed than those with FTLD-U pathology. Immunohistochemistry with TDP-43 antibodies was negative. VBM revealed grey matter atrophy predominantly in the temporoparietal cortices with notable sparing of the hippocampus in the aphasia with AD subjects. In comparison, the aphasic subjects with FTLD-U showed sparing of the parietal lobe. Typical AD subjects showed temporoparietal and hippocampal atrophy.
Conclusions
A temporoparietal pattern of atrophy on MRI in patients with progressive fluent aphasia and relatively preserved processing speed is suggestive of underlying AD pathology rather than FTLD-U.
doi:10.1212/01.wnl.0000287073.12737.35
PMCID: PMC2749307  PMID: 18166704
Primary progressive aphasia; Progressive non-fluent aphasia; Logopenic progressive aphasia; frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes; Voxel based morphometry
15.  Atrophy Rates Accelerate in Amnestic Mild Cognitive Impairment 
Neurology  2007;70(19 Pt 2):1740-1752.
Background
We tested if rates of brain atrophy accelerate in individuals with amnestic mild cognitive impairment (aMCI) as they progress to typical late onset Alzheimer's Disease (AD). We included comparisons to aMCI subjects who did not progress (labeled aMCI-S) and also to cognitively normal elderly subjects (CN).
Methods
We studied 46 aMCI subjects who progressed to AD (labeled aMCI-P), 46 CN, and 23 aMCI-S. All subjects must have had three or more serial MRI scans. Rates of brain shrinkage and ventricular expansion were measured across all available serial MRI scans in each subject. Change in volumes relative to the point at which subjects progressed to a clinical diagnosis of AD (the index date) was modeled in aMCI-P. Change in volumes relative to age was modeled in all three clinical groups.
Results
In aMCI-P the change in pre to post index rate (i.e. acceleration) of ventricular expansion was 1.7 cm3/yr, and acceleration in brain shrinkage was 5.3 cm3/yr. Brain volume declined and ventricular volume increased in all three groups with age. Volume changes decelerated with increasing age in aMCI-P, and to a lesser extent aMCI-S, but were linear in the matched CN. Among all aMCI subjects, rates of atrophy were greater in apolipoprotein E ε4 carriers than non-carriers.
Conclusions
Rates of atrophy accelerate as individuals progress from aMCI to typical late onset AD. Rates of atrophy are greater in younger than older aMCI-P and aMCI-S subjects. We did not find that atrophy rates varied with age in 70 – 90 year old CN subjects.
doi:10.1212/01.wnl.0000281688.77598.35
PMCID: PMC2734477  PMID: 18032747
16.  MRI patterns of atrophy associated with progression to AD in amnestic Mild Cognitive Impairment 
Neurology  2007;70(7):512-520.
Objective
To compare the patterns of grey matter loss in subjects with amnestic Mild Cognitive Impairment (aMCI) who progress to Alzheimer's disease within a fixed clinical follow-up time versus those who remain stable.
Methods
Twenty-one aMCI subjects were identified from the Mayo Clinic Alzheimer's research program that remained clinically stable for their entire observed clinical course (aMCI-S), where the minimum required follow-up time from MRI to last follow-up assessment was three years. These subjects were age and gender-matched to 42 aMCI subjects who progressed to AD within 18 months of the MRI (aMCI-P). Each subject was then age and gender-matched to a control subject. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aMCI-P and aMCI-S groups compared to the control group, and compared to each other.
Results
The aMCI-P group showed bilateral loss affecting the medial and inferior temporal lobe, temporoparietal association neocortex and frontal lobes, compared to controls. The aMCI-S group showed no regions of grey matter loss when compared to controls. When the aMCI-P and aMCI-S groups were compared directly, the aMCI-P group showed greater loss in the medial and inferior temporal lobes, the temporoparietal neocortex, posterior cingulate, precuneus, anterior cingulate, and frontal lobes than the aMCI-S group.
Conclusions
The regions of loss observed in aMCI-P are typical of subjects with AD. The lack of grey matter loss in the aMCI-S subjects is consistent with the notion that patterns of atrophy on MRI at baseline map well onto the subsequent clinical course.
doi:10.1212/01.wnl.0000280575.77437.a2
PMCID: PMC2734138  PMID: 17898323
17.  Prediction of AD with MRI-Based Hippocampal Volume in Mild Cognitive Impairment 
Neurology  1999;52(7):1397-1403.
Objective
To test the hypothesis that magnetic resonance imaging (MRI)-based measurements of hippocampal volume were related to the risk of future conversion to Alzheimer's disease (AD) in elderly patients with a mild cognitive impairment (MCI)
Background
Persons who develop AD pass through a transitional state which can be characterized as a MCI. However, in some patients MCI is a more benign condition which may not progress to AD or may do so slowly.
Patients
Eighty consecutive patients who met criteria for the diagnosis of MCI were recruited from the Mayo Clinic Alzheimer's Disease Center/Alzheimer's Disease Patient Registry.
Methods
At entry into the study each patient received a MRI examination of the head from which the volumes of both hippocampi were measured. Patients were then followed longitudinally with approximately annual clinical/cognitive assessments. The primary endpoint was the crossover of individual MCI patients to the clinical diagnosis of AD during longitudinal clinical followup.
Results
Over the period of longitudinal observation, which averaged 32.6 months, 27 of the 80 MCI patients became demented. Hippocampal atrophy at baseline was associated with crossover from MCI to AD (relative risk, 0.69, p = 0.015). When hippocampal volume was entered into bivariate models with age, post menopausal estrogen replacement, standard neuropsychological tests, apolipoprotein E genotype, history of ischemic heart disease and hypertension the relative risks were not substantially different from that found univariately and the associations between hippocampal volume and crossover remained significant.
Conclusion
In elderly patients with MCI, hippocampal atrophy determined by premorbid MRI-based volume measurements is predictive of subsequent conversion to AD.
PMCID: PMC2730146  PMID: 10227624
Dementia; Alzheimer's disease; Magnetic resonance imaging; brain; Quantitative MRI; Hippocampus; Volumetric MR

Results 1-17 (17)