PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Midbrain atrophy is not a biomarker of PSP pathology 
Background
Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), although it is unclear whether it is associated with the PSP syndrome (PSPS) or PSP pathology. We aimed to determine whether midbrain atrophy is a useful biomarker of PSP pathology, or whether it is only associated with typical PSPS.
Methods
We identified all autopsy-confirmed subjects with the PSP clinical phenotype (i.e. PSPS) or PSP pathology and a volumetric MRI. Of 24 subjects with PSP pathology, 11 had a clinical diagnosis of PSPS (PSP-PSPS), and 13 had a non-PSPS clinical diagnosis (PSP-other). Three subjects had PSPS and corticobasal degeneration pathology (CBD-PSPS). Healthy control and disease control groups (i.e. a group without PSPS or PSP pathology) and a group with CBD pathology and corticobasal syndrome (CBD-CBS) were selected. Midbrain area was measured in all subjects.
Results
Midbrain area was reduced in each group with clinical PSPS (with and without PSP pathology). The group with PSP pathology and non-PSPS clinical syndromes did not show reduced midbrain area. Midbrain area was smaller in the subjects with PSPS compared to those without PSPS (p<0.0001), with an area under the receiver-operator-curve of 0.99 (0.88,0.99). A midbrain area cut-point of 92 mm2 provided optimum sensitivity (93%) and specificity (89%) for differentiation.
Conclusion
Midbrain atrophy is associated with the clinical presentation of PSPS, but not with the pathological diagnosis of PSP in the absence of the PSPS clinical syndrome. This finding has important implications for the utility of midbrain measurements as diagnostic biomarkers for PSP pathology.
doi:10.1111/ene.12212
PMCID: PMC3773014  PMID: 23746093
Progressive supranuclear palsy; tau; neuropathology; MRI; midbrain
2.  Caudate atrophy on MRI is a characteristic feature of FTLD-FUS 
Background and Purpose
Frontotemporal lobar degeneration (FTLD) can be subdivided into those in which the abnormal protein is tau (FTLD-TAU), the TAR DNA binding protein 43 (FTLD-TDP) and the fused in sarcoma protein (FTLD-FUS). We have observed severe caudate atrophy at autopsy in FTLD-FUS, and hence we aimed to determine whether caudate atrophy on MRI is a feature that can distinguish FTLD-FUS from FTLD-TDP and FTLD-TAU.
Methods
From a cohort of 207 cases of FTLD we identified all cases of FTLD-FUS that had a volumetric antemortem head MRI (n=3). Caudate and frontal lobe volumes were measured in all three cases using atlas based parcellation and SPM5, and were compared to 10 randomly selected cases of FTLD-TDP and 10 randomly selected cases of FTLD-TAU. Total grey matter volumes were also calculated for all cases.
Results
The FTLD-FUS cases had significantly smaller caudate volumes (p=0.02) yet similar frontal lobe grey matter volumes (p=0.12) compared to FTLD-TDP and FTLD-TAU. Caudate volumes when corrected for total grey matter volume (p=0.01) or frontal lobe grey matter volume (p=0.01) were significantly smaller in FTLD-FUS than FTLD-TDP and FTLD-TAU, and showed no overlap with the other two groups.
Conclusions
Caudate atrophy on MRI appears to be significantly greater in FTLD-FUS compared with FTLD-TDP and FTLD-TAU suggesting that severe caudate atrophy may be a useful clinical feature to predict FTLD-FUS pathology.
doi:10.1111/j.1468-1331.2010.02975.x
PMCID: PMC2989679  PMID: 20236174
TDP-43; FTLD-TAU; FTLD-FUS; atlas based parcellation; caudate atrophy

Results 1-2 (2)