Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Voxel-based morphometry in patients with obsessive-compulsive behaviors in behavioral variant frontotemporal dementia 
European Journal of Neurology  2012;19(6):911-917.
Obsessions and compulsive (OC) behaviors are a frequent feature of behavioral variant frontotemporal dementia (bvFTD), but their structural correlates have not been definitively established.
Patients with bvFTD presenting to the Mayo Clinic Alzheimer’s Disease Research Center were recruited. Each patient’s caregiver was given the Yale-Brown Obsessive-Compulsive scale (YBOCS) to document the type and presence of OC behaviors and to rate their severity. All subjects underwent a standardized MRI which was evaluated using VBM. 17 patients with bvFTD were recruited and 11 were included in the study and compared to 11 age and gender matched controls. Six were excluded for lack of MRI at time of survey or a pre-existing neurodegenerative condition.
Nine of the 11 reported OC behaviors, with the most frequent compulsions being checking, hoarding, ordering/arranging, repeating rituals, and cleaning. In the VBM analysis, total YBOCS score correlated with grey matter loss in the bilateral globus pallidus, left putamen, and in the lateral temporal lobe, particularly the left middle and inferior temporal gyri (p<0.001 uncorrected for multiple comparisons).
Obsessive-compulsive behaviors were frequent among these patients. The correlation with basal ganglia atrophy may point to involvement of frontal subcortical neuronal networks. Left lateral temporal lobe volume loss likely reflects the number of MAPT mutation patients included but also provides additional data implicating temporal lobe involvement in OC behaviors.
PMCID: PMC3351534  PMID: 22284815
Frontotemporal dementia; magnetic resonance imaging; obsessive behavior; compulsive behavior
2.  Rates of cerebral atrophy differ in different degenerative pathologies 
Brain : a journal of neurology  2007;130(Pt 4):1148-1158.
Neurodegenerative disorders are pathologically characterized by the deposition of abnormal proteins in the brain. It is likely that future treatment trials will target the underlying protein biochemistry and it is therefore increasingly important to be able to distinguish between different pathologies during life. The aim of this study was to determine whether rates of brain atrophy differ in neurodegenerative dementias that vary by pathological diagnoses and characteristic protein biochemistry. Fifty-six autopsied subjects were identified with a clinical diagnosis of dementia and two serial head MRI. Subjects were subdivided based on pathological diagnoses into Alzheimer's disease (AD), dementia with Lewy bodies (DLB), mixed AD/DLB, frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes (FTLD-U), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). Twenty-five controls were matched by age, gender, and scan interval, to the study cohort. The boundary-shift integral was used to calculate change over time in whole brain (BBSI) and ventricular volume (VBSI). All BSI results were annualized by adjusting for scan interval. The rates of whole brain atrophy and ventricular expansion were significantly increased compared to controls in the AD, mixed AD/DLB, FTLD-U, CBD and PSP groups. However, atrophy rates in the DLB group were not significantly different from control rates of atrophy. The largest rates of atrophy were observed in the CBD group which had a BBSI of 2.3% and VBSI of 16.2%. The CBD group had significantly greater rates of BBSI and VBSI than the DLB, mixed AD/DLB, AD and PSP groups, with a similar trend observed when compared to the FTLD-U group. The FTLD-U group showed the next largest rates with a BBSI of 1.7% and VBSI of 9.6% which were both significantly greater than the DLB group. There was no significant difference in the rates of atrophy between the AD, mixed AD/DLB and PSP groups, which all showed similar rates of atrophy; BBSI of 1.1, 1.3 and 1.0% and VBSI of 8.3, 7.2 and 10.9% respectively. Rates of atrophy therefore differ according to the pathological diagnoses and underlying protein biochemistry. While rates are unlikely to be useful in differentiating AD from cases with mixed AD/DLB pathology, they demonstrate important pathophysiological differences between DLB and those with mixed AD/DLB and AD pathology, and between those with CBD and PSP pathology.
PMCID: PMC2752409  PMID: 17347250
magnetic resonance imaging; Alzheimer's disease; dementia with Lewy bodies; frontotemporal lobar degeneration; progressive supranuclear palsy
3.  3D Maps from Multiple MRI Illustrate Changing Atrophy Patterns as Subjects Progress from MCI to AD 
Brain : a journal of neurology  2007;130(Pt 7):1777-1786.
Mild cognitive impairment (MCI), particularly the amnestic subtype (aMCI), is considered as a transitional stage between normal aging and a diagnosis of clinically probable Alzheimer's disease (AD). The aMCI construct is particularly useful as it provides an opportunity to assess a clinical stage which in most subjects represents prodromal AD. The aim of this study was to assess the progression of cerebral atrophy over multiple serial MRI during the period from aMCI to conversion to AD. Thirty-three subjects were selected that fulfilled clinical criteria for aMCI and had three serial MRI scans: the first scan approximately three years before conversion to AD, the second scan approximately one year before conversion, and the third scan at the time of conversion from aMCI to AD. A group of 33 healthy controls were age and gender-matched to the study cohort. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aMCI subjects at each time-point compared to the control group. Customized templates and prior probability maps were used to avoid normalization and segmentation bias. The pattern of grey matter loss in the aMCI subject scans that were three years before conversion was focused primarily on the medial temporal lobes, including the amygdala, anterior hippocampus and entorhinal cortex, with some additional involvement of the fusiform gyrus, compared to controls. The extent and magnitude of the cerebral atrophy further progressed by the time the subjects were one year before conversion. At this point atrophy in the temporal lobes spread to include the middle temporal gyrus, and extended into more posterior regions of the temporal lobe to include the entire extent of the hippocampus. The parietal lobe also started to become involved. By the time the subjects had converted to a clinical diagnosis of AD the pattern of grey matter atrophy had become still more widespread with more severe involvement of the medial temporal lobes and the temporoparietal association cortices and, for the first time, substantial involvement of the frontal lobes. This pattern of progression fits well with the Braak and Braak neurofibrillary pathological staging scheme in AD. It suggests that the earliest changes occur in the anterior medial temporal lobe and fusiform gyrus, and that these changes occur at least three years before conversion to AD. These results also suggest that 3-dimensional patterns of grey matter atrophy may help to predict the time to conversion in subjects with aMCI.
PMCID: PMC2752411  PMID: 17533169
Alzheimer's disease; mild cognitive impairment; longitudinal; magnetic resonance imaging; voxel-based morphometry
4.  Patterns of Atrophy differ among Specific Subtypes of Mild Cognitive Impairment 
Archives of neurology  2007;64(8):1130-1138.
To investigate patterns of cerebral atrophy associated with specific subtypes of mild cognitive impairment (MCI).
Case-control study
Community-based sample at a tertiary referral center
One hundred and forty-five subjects with MCI subjects and 145 age and gender-matched cognitively normal controls. MCI subjects were classified as amnestic single cognitive domain, amnestic multi-domain, non-amnestic single-domain and non-amnestic multi-domain MCI. The non-amnestic single-domain subjects were also divided into language, attention/executive, and visuospatial groups based on the specific cognitive impairment.
Main Outcome Measure
Patterns of grey matter loss in the MCI groups compared to controls assessed using voxel-based morphometry
The amnestic single and multi-domain groups both showed loss in the medial and inferior temporal lobes compared to controls, while the multi-domain group also showed involvement of the posterior temporal lobe, parietal association cortex and posterior cingulate. The non-amnestic single-domain subjects with language impairment showed loss in the left anterior inferior temporal lobe. The group with attention/executive deficits showed loss in the basal forebrain and hypothalamus. No coherent patterns of loss were observed in the other subgroups.
The pattern of atrophy in the amnestic groups is consistent with the concept that MCI in most of these subjects represents prodromal AD. However, the different patterns in the language and attention/executive groups suggest that these subjects may have a different underlying disorder.
PMCID: PMC2735186  PMID: 17698703
5.  MRI patterns of atrophy associated with progression to AD in amnestic Mild Cognitive Impairment 
Neurology  2007;70(7):512-520.
To compare the patterns of grey matter loss in subjects with amnestic Mild Cognitive Impairment (aMCI) who progress to Alzheimer's disease within a fixed clinical follow-up time versus those who remain stable.
Twenty-one aMCI subjects were identified from the Mayo Clinic Alzheimer's research program that remained clinically stable for their entire observed clinical course (aMCI-S), where the minimum required follow-up time from MRI to last follow-up assessment was three years. These subjects were age and gender-matched to 42 aMCI subjects who progressed to AD within 18 months of the MRI (aMCI-P). Each subject was then age and gender-matched to a control subject. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aMCI-P and aMCI-S groups compared to the control group, and compared to each other.
The aMCI-P group showed bilateral loss affecting the medial and inferior temporal lobe, temporoparietal association neocortex and frontal lobes, compared to controls. The aMCI-S group showed no regions of grey matter loss when compared to controls. When the aMCI-P and aMCI-S groups were compared directly, the aMCI-P group showed greater loss in the medial and inferior temporal lobes, the temporoparietal neocortex, posterior cingulate, precuneus, anterior cingulate, and frontal lobes than the aMCI-S group.
The regions of loss observed in aMCI-P are typical of subjects with AD. The lack of grey matter loss in the aMCI-S subjects is consistent with the notion that patterns of atrophy on MRI at baseline map well onto the subsequent clinical course.
PMCID: PMC2734138  PMID: 17898323
6.  Focal atrophy in Dementia with Lewy Bodies on MRI: a distinct pattern from Alzheimer's disease 
Brain : a journal of neurology  2007;130(Pt 3):708-719.
Dementia with Lewy Bodies (DLB) is the second most common cause of degenerative dementia after Alzheimer's disease (AD). However, unlike in AD the patterns of cerebral atrophy associated with DLB have not been well established. The aim of this study was to identify a signature pattern of cerebral atrophy in DLB and to compare it to the pattern found in AD. Seventy-two patients that fulfilled clinical criteria for probable DLB were age and gender-matched to 72 patients with probable AD and 72 controls. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the DLB and AD groups, relative to controls, after correction for multiple comparisons (p<0.05). Study specific templates and prior probability maps were used to avoid normalization and segmentation bias. Region-of-interest (ROI) analyses were also performed comparing loss of the midbrain, substantia innominata (SI), temporoparietal cortex and hippocampus between the groups. The DLB group showed very little cortical involvement on VBM with regional grey matter loss observed primarily in the dorsal midbrain, SI and hypothalamus. In comparison, the AD group showed a widespread pattern of grey matter loss involving the temporoparietal association cortices and the medial temporal lobes. The SI and dorsal midbrain were involved in AD however they were not identified as a cluster of loss discrete from uninvolved surrounding areas, as observed in the DLB group. On direct comparison between the two groups, the AD group showed greater loss in the medial temporal lobe and inferior temporal regions than the DLB group. The ROI analysis showed reduced SI and midbrain grey matter in both the AD and DLB groups. The SI grey matter was reduced more in AD than DLB, yet the midbrain was reduced more in DLB than AD. The hippocampus and temporoparietal cortex showed significantly greater loss in the AD group compared to the DLB group. A pattern of relatively focused atrophy of the midbrain, hypothalamus and SI, with a relative sparing of the hippocampus and temporoparietal cortex, is therefore suggestive of DLB and may aid in the differentiation of DLB from AD. These findings support recent pathological studies showing an ascending pattern of Lewy Body progression from brainstem to basal areas of the brain. Damage to this network of structures in DLB may affect a number of different neurotransmitter systems which in turn may contribute to a number of the core clinical features of DLB.
PMCID: PMC2730778  PMID: 17267521
Dementia with Lewy Bodies; Alzheimer's disease; voxel-based morphometry; magnetic resonance imaging; neurotransmitter systems

Results 1-6 (6)