Search tips
Search criteria

Results 1-25 (101)

Clipboard (0)
more »
Year of Publication
more »
Document Types
1.  Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal 
Neurology  2014;82(4):317-325.
To estimate rates of progression from mild cognitive impairment (MCI) to dementia and of reversion from MCI to being cognitively normal (CN) in a population-based cohort.
Participants (n = 534, aged 70 years and older) enrolled in the prospective Mayo Clinic Study of Aging were evaluated at baseline and every 15 months to identify incident MCI or dementia.
Over a median follow-up of 5.1 years, 153 of 534 participants (28.7%) with prevalent or incident MCI progressed to dementia (71.3 per 1,000 person-years). The cumulative incidence of dementia was 5.4% at 1 year, 16.1% at 2, 23.4% at 3, 31.1% at 4, and 42.5% at 5 years. The risk of dementia was elevated in MCI cases (hazard ratio [HR] 23.2, p < 0.001) compared with CN subjects. Thirty-eight percent (n = 201) of MCI participants reverted to CN (175.0/1,000 person-years), but 65% subsequently developed MCI or dementia; the HR was 6.6 (p < 0.001) compared with CN subjects. The risk of reversion was reduced in subjects with an APOE ε4 allele (HR 0.53, p < 0.001), higher Clinical Dementia Rating Scale–Sum of Boxes (HR 0.56, p < 0.001), and poorer cognitive function (HR 0.56, p < 0.001). The risk was also reduced in subjects with amnestic MCI (HR 0.70, p = 0.02) and multidomain MCI (HR 0.61, p = 0.003).
MCI cases, including those who revert to CN, have a high risk of progressing to dementia. This suggests that diagnosis of MCI at any time has prognostic value.
PMCID: PMC3929198  PMID: 24353333
2.  Association of diabetes with amnestic and nonamnestic mild cognitive impairment 
Type 2 diabetes may increase the risk of amnestic mild cognitive impairment (aMCI) through Alzheimer's disease (AD)-related and vascular pathology and may also increase the risk of nonamnestic MCI (naMCI) through vascular disease mechanisms. We examined the association of type 2 diabetes with mild cognitive impairment (MCI) and MCI subtype (aMCI and naMCI) overall and by sex.
Participants were Olmsted County, Minnesota residents (70 years and older) enrolled in a prospective, population-based study. At baseline and every 15 months thereafter, participants were evaluated using the Clinical Dementia Rating scale, a neurological evaluation, and neuropsychological testing for a diagnosis of normal cognition, MCI, and dementia by a consensus panel. Type 2 diabetes was ascertained from the medical records of participants at baseline.
Over a median 4.0 years of follow-up, 348 of 1450 subjects developed MCI. Type 2 diabetes was associated (hazard ratio [95% confidence interval]) with MCI (1.39 [1.08–1.79]), aMCI (1.58 [1.17–2.15]; multiple domain: 1.58 [1.01–2.47]; single domain: 1.49 [1.09–2.05]), and the hazard ratio for naMCI was elevated (1.37 [0.84–2.24]). Diabetes was strongly associated with multiple-domain aMCI in men (2.42 [1.31–4.48]) and an elevated risk of multiple domain naMCI in men (2.11 [0.70–6.33]), and with single domain naMCI in women (2.32 [1.04–5.20]).
Diabetes was associated with an increased risk of MCI in elderly persons. The association of diabetes with MCI may vary with subtype, number of domains, and sex. Prevention and control of diabetes may reduce the risk of MCI and Alzheimer's disease.
PMCID: PMC3830601  PMID: 23562428
Mild cognitive impairment; Risk factors; Type 2 diabetes; Incidence; Cohort studies; Population-based studies; Sex differences; Diabetic retinopathy; Diabetic neuropathy
3.  Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies 
Neurology  2013;81(23):2032-2038.
To determine the rate of progression of mild cognitive impairment (MCI) to dementia with Lewy bodies (DLB).
We followed 337 patients with MCI in the Mayo Alzheimer's Disease Research Center (range 2–12 years). Competing risks survival models were used to examine the rates of progression to clinically probable DLB and Alzheimer disease (AD). A subset of patients underwent neuropathologic examination.
In this clinical cohort, 116 remained as MCI, while 49 progressed to probable DLB, 162 progressed to clinically probable AD, and 10 progressed to other dementias. Among nonamnestic MCI, progression rate to probable DLB was 20 events per 100 person-years and to probable AD was 1.6 per 100 person-years. Among amnestic MCI, progression rate to probable AD was 17 events per 100 person-years, and to DLB was 1.5 events per 100 person-years. In 88% of those who developed probable DLB, the baseline MCI diagnosis included attention and/or visuospatial deficits. Those who developed probable DLB were more likely to have baseline daytime sleepiness and subtle parkinsonism. In 99% of the clinically probable AD group, the baseline MCI diagnosis included memory impairment. Neuropathologic confirmation was obtained in 24 of 30 of those with clinically probable AD, and in 14 of 18 of those with clinically probable DLB.
In a clinical sample, patients with nonamnestic MCI were more likely to develop DLB, and those with amnestic MCI were more likely to develop probable AD.
PMCID: PMC3854825  PMID: 24212390
4.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
PMCID: PMC3812105  PMID: 24107861
5.  Diabetes and Elevated HbA1c levels are Associated with Brain Hypometabolism but not Amyloid Accumulation 
Dysfunctional insulin signaling may affect brain metabolism or amyloid deposition. We investigated the associations of type 2 diabetes with amyloid accumulation measured using 11C-Pittsburgh Compound B (PiB) and brain hypometabolism measured using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).
We studied a sample of non-demented participants from the population-based Mayo Clinic Study of Aging. All subjects underwent MRI, amyloid PET and FDG PET. Alzheimer’s disease (AD) signature and region of interest (ROI) measures for PiB retention ratio and FDG ratio were measured. Diabetes was assessed from the Rochester Epidemiology Project medical records-linkage system.
Among 749 participants (median age 79.0 years; 56.5% male, 81.0% cognitively normal; 20.6% diabetics), FDG hypometabolism (FDG ratio < 1.31) in the AD signature meta-ROI was more common in diabetics (48.1%) than in non-diabetics (28.9%; p <0.001). The median FDG ratio was lower in diabetics vs. non-diabetics in the AD signature meta-ROI (1.32 vs. 1.40, p < 0.001), and in the angular (1.40 vs. 1.48, p < 0.001) and posterior cingulate gyri ROIs (1.63 vs. 1.72, p < 0.001). The odds ratio (OR [95% confidence interval]) for abnormal AD signature FDG hypometabolism was elevated (OR, 2.28 [1.56, 3.33]) in diabetics vs. non-diabetics after adjustment for age, sex, and education, and after additional adjustment for Apolipoprotein ε4 allele, glycemic level, and cognitive status (OR, 1.69 [1.10, 2.60]). However, AD signature PiB retention ratio was similar in diabetics vs. non-diabetics (OR, 1.03 [0.71, 1.51]; p = 0.87). In post-hoc analyses in non-diabetics, a 1% increase in HBA1c was associated with greater AD signature hypometabolism in cognitively normal subjects (OR, 1.93 [1.03, 3.62; p = 0.04]) and in the total cohort (OR 1.59 [0.92, 2.75; p = 0.10).
Diabetes and poor glycemic control in non-diabetics may enhance glucose hypometabolism in AD signature regions. These factors should be investigated in longitudinal studies for their role in detecting onset of symptoms in AD.
PMCID: PMC4011952  PMID: 24652830
Diabetes; cerebral glucose metabolism; FDG- and PiB-PET imaging; hemoglobin A1c; amyloid accumulation
6.  Practice effects and longitudinal cognitive change in normal aging vs. incident mild cognitive impairment and dementia in the Mayo Clinic Study of Aging 
The Clinical neuropsychologist  2013;27(8):10.1080/13854046.2013.836567.
The objective of this study was to examine practice effects and longitudinal cognitive change in a population based cohort classified as clinically normal at their initial evaluation. We examined 1390 individuals with a median age of 78.1 years and re-evaluated them up to four times at approximate 15 month intervals, with an average follow-up time of five years. Of the 1390 participants, 947 (69%) individuals remained cognitively normal, 397 (29%) progressed to mild cognitive impairment (MCI), and 46 (3%) to dementia. The stable normal group showed an initial practice effect in all domains which was sustained in memory and visuospatial reasoning. There was only a slight decline in attention and language after visit 3. We combined individuals with incident MCI and dementia to form one group representing those who declined. The incident MCI/dementia group showed an unexpected practice effect in memory from baseline to visit 2, with a significant decline thereafter. This group did not demonstrate practice effects in any other domain and showed a downward trajectory in all domains at each evaluation. Modeling cognitive change in an epidemiologic sample may serve as a useful benchmark for evaluating cognitive change in future intervention studies.
PMCID: PMC3869900  PMID: 24041121
Cognition; memory; practice effects; mild cognitive impairment; Alzheimer’s disease
7.  Subtle gait changes in patients with REM Behavior Disorder 
Many people with REM sleep behavior disorder have an underlying synucleinopathy, the most common of which is Lewy body disease. Identifying additional abnormal clinical features may help in identifying those at greater risk of evolving to a more severe syndrome. As gait disorders are common in the synucleinopathies, early abnormalities in gait in those with REM sleep behavior disorder could help in identifying those at increased risk of developing overt parkinsonism and/or cognitive impairment.
We identified 42 probable REM sleep behavior disorder subjects and 492 controls using the Mayo Sleep Questionnaire and assessed gait velocity, cadence and stride dynamics with an automated gait analysis system.
Cases and controls were similar in age (79.9 ± 4.7 & 80.1 ± 4.7, p= 0.74), UPDRS score (3.3 ± 5.5 & 1.9 ± 4.1, p=0.21) and Mini-Mental State Examination scores (27.2 ± 1.9 & 27.7 ± 1.6, p=0.10). A diagnosis of probable REM sleep behavior disorder was associated with decreased velocity (−7.9 cm/sec, 95%CI −13.8 to −2.0, p<0.01), cadence (−4.4 steps/min, 95%CI −7.6 to −1.3, p<0.01), and significantly increased double limb support variability (30%, 95%CI 6 – 60, p=0.01), greater stride time variability (29%, 95%CI 2 – 63, p=0.03) and swing time variability (46%, 95%CI 15 – 84, p<0.01).
Probable REM sleep behavior disorder is associated with subtle gait changes prior to overt clinical parkinsonism. Diagnosis of probable REM sleep behavior disorder supplemented by gait analysis may help as a screening tool for disorders of α-synuclein.
PMCID: PMC3952497  PMID: 24130124
REM Sleep Behavior Disorder; gait; gait variability
8.  Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia 
Mutations in profilin-1 (PFN1) have recently been identified in patients with amyotrophic lateral sclerosis (ALS). Because of the considerable overlap between ALS and the common subtype of frontotemporal dementia, which is characterized by transactive response DNA-binding protein 43 pathology (FTLD-TDP), we tested cohorts of ALS and FTLD-TDP patients for PFN1 mutations.
DNA was obtained from 342 ALS patients and 141 FTLD-TDP patients at our outpatient clinic and brain bank for neurodegenerative diseases at the Mayo Clinic Florida, Jacksonville, USA. We screened these patients for mutations in coding regions of PFN1 by Sanger sequencing. Subsequently, we used TaqMan genotyping assays to investigate the identified variant in 1167 control subjects.
One variant, p.E117G, was detected in 1 ALS patient, 1 FTLD-TDP patient, and 2 control subjects. The mutation frequency of patients versus control subjects was not significantly different (p-value = 0.36). Moreover, PFN1 and TDP-43 staining of autopsy material did not differ between patients with or without this variant.
The p.E117G variant appears to represent a benign polymorphism. PFN1 mutations, in general, are rare in ALS and FTLD-TDP patients.
PMCID: PMC3923463  PMID: 23634771
Amyotrophic lateral sclerosis; frontotemporal dementia; profilin-1; TDP-43; genetics
9.  Risk factors for dementia with Lewy bodies 
Neurology  2013;81(9):833-840.
To determine the risk factors associated with dementia with Lewy bodies (DLB).
We identified 147 subjects with DLB and sampled 2 sex- and age-matched cognitively normal control subjects for each case. We also identified an unmatched comparison group of 236 subjects with Alzheimer disease (AD). We evaluated 19 candidate risk factors in the study cohort.
Compared with controls, subjects with DLB were more likely to have a history of anxiety (odds ratio; 95% confidence interval) (7.4; 3.5–16; p < 0.0001), depression (6.0; 3.7–9.5; p < 0.0001), stroke (2.8; 1.3–6.3; p = 0.01), a family history of Parkinson disease (PD) (4.6; 2.5–8.6; p < 0.0001), and carry APOE ε4 alleles (2.2; 1.5–3.3; p < 0.0001), but less likely to have had cancer (0.44; 0.27–0.70; p = 0.0006) or use caffeine (0.29; 0.14–0.57; p < 0.0001) with a similar trend for alcohol (0.65; 0.42–1.0; p = 0.0501). Compared with subjects with AD, subjects with DLB were younger (72.5 vs 74.9 years, p = 0.021) and more likely to be male (odds ratio; 95% confidence interval) (5.3; 3.3–8.5; p < 0.0001), have a history of depression (4.3; 2.4–7.5; p < 0.0001), be more educated (2.5; 1.1–5.6; p = 0.031), have a positive family history of PD (5.0; 2.4–10; p < 0.0001), have no APOE ε4 alleles (0.61; 0.40–0.93; p = 0.02), and to have had an oophorectomy before age 45 years (7.6; 1.5–39; p = 0.015).
DLB risk factors are an amalgam of those for AD and PD. Smoking and education, which have opposing risk effects on AD and PD, are not risk factors for DLB; however, depression and low caffeine intake, both risk factors for AD and PD, increase risk of DLB more strongly than in either.
PMCID: PMC3908463  PMID: 23892702
10.  Assessing the Temporal Relationship Between Cognition and Gait: Slow Gait Predicts Cognitive Decline in the Mayo Clinic Study of Aging 
The association between gait speed and cognition has been reported; however, there is limited knowledge about the temporal associations between gait slowing and cognitive decline among cognitively normal individuals.
The Mayo Clinic Study of Aging is a population-based study of Olmsted County, Minnesota, United States, residents aged 70–89 years. This analysis included 1,478 cognitively normal participants who were evaluated every 15 months with a nurse visit, neurologic evaluation, and neuropsychological testing. The neuropsychological battery used nine tests to compute domain-specific (memory, language, executive function, and visuospatial skills) and global cognitive z-scores. Timed gait speed (m/s) was assessed over 25 feet (7.6 meters) at a usual pace. Using mixed models, we examined baseline gait speed (continuous and in quartiles) as a predictor of cognitive decline and baseline cognition as a predictor of gait speed changes controlling for demographics and medical conditions.
Cross-sectionally, faster gait speed was associated with better performance in memory, executive function, and global cognition. Both cognitive scores and gait speed declined over time. A faster gait speed at baseline was associated with less cognitive decline across all domain-specific and global scores. These results were slightly attenuated after excluding persons with incident mild cognitive impairment or dementia. By contrast, baseline cognition was not associated with changes in gait speed.
Our study suggests that slow gait precedes cognitive decline. Gait speed may be useful as a reliable, easily attainable, and noninvasive risk factor for cognitive decline.
PMCID: PMC3712358  PMID: 23250002
Gait speed; Cognition; Longitudinal; Cohort study.
11.  Criteria for Mild Cognitive Impairment Due to Alzheimer’s Disease in the Community 
Annals of neurology  2013;74(2):199-208.
The newly proposed National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) suggest a combination of clinical features and biomarker measures, but their performance in the community is not known.
The Mayo Clinic Study of Aging (MCSA) is a population-based longitudinal study of non-demented subjects in Olmsted County, Minnesota. A sample of 154 MCI subjects from the MCSA was compared to a sample of 58 amnestic MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI 1) to assess the applicability of the criteria in both settings and to assess their outcomes.
In the MCSA, 14% and in ADNI 1 16% of subjects were biomarker negative. In addition, 14% of the MCSA and 12% of ADNI 1 subjects had evidence for amyloid deposition only, while 43% of MCSA and 55% of ADNI 1 subjects had evidence for amyloid deposition plus neurodegeneration (MRI atrophy, FDG PET hypometabolism or both). However, a considerable number of subjects had biomarkers inconsistent with the proposed AD model, e.g., 29% of MCSA subjects and 17% of the ADNI 1 subjects had evidence for neurodegeneration without amyloid deposition. These subjects may not be on an AD pathway. Neurodegeneration appears to be a key factor in predicting progression relative to amyloid deposition alone.
The NIA-AA criteria apply to most MCI subjects in both the community and clinical trials settings however, a sizeable proportion of subjects had conflicting biomarkers which may be very important and need to be explored.
PMCID: PMC3804562  PMID: 23686697
12.  MRI and MRS predictors of mild cognitive impairment in a population-based sample 
Neurology  2013;81(2):126-133.
To investigate MRI and proton magnetic resonance spectroscopy (MRS) predictors of mild cognitive impairment (MCI) in cognitively normal older adults.
Subjects were cognitively normal older adults (n = 1,156) who participated in the population-based Mayo Clinic Study of Aging MRI/MRS study from August 2005 to December 2010 and had at least one annual clinical follow-up. Single-voxel MRS was performed from the posterior cingulate gyri, and hippocampal volumes and white matter hyperintensity volumes were quantified using automated methods. Brain infarcts were assessed on MRI. Cox proportional hazards regression, with age as the time scale, was used to assess the effect of MRI and MRS markers on the risk of progression from cognitively normal to MCI. Linear mixed-effects models were used to assess the effect of MRI and MRS markers on cognitive decline.
After a median follow-up of 2.8 years, 214 participants had progressed to MCI or dementia (estimated incidence rate = 6.1% per year; 95% confidence interval = 5.3%–7.0%). In univariable modeling, hippocampal volume, white matter hyperintensity volume, and N-acetylaspartate/myo-inositol were significant predictors of MCI in cognitively normal older adults. In multivariable modeling, only decreased hippocampal volume and N-acetylaspartate/myo-inositol were independent predictors of MCI. These MRI/MRS predictors of MCI as well as infarcts were associated with cognitive decline (p < 0.05).
Quantitative MRI and MRS markers predict progression to MCI and cognitive decline in cognitively normal older adults. MRS may contribute to the assessment of preclinical dementia pathologies by capturing neurodegenerative changes that are not detected by hippocampal volumetry.
PMCID: PMC3770173  PMID: 23761624
13.  MRS in Early and Presymptomatic Carriers of a Novel Octapeptide Repeat Insertion in the Prion Protein Gene 
To evaluate the proton MR spectroscopy (1H MRS) changes in carriers of a novel octapeptide repeat insertion in the Prion Protein Gene (PRNP) and family history of frontotemporal dementia with ataxia. Four at-risk mutation carriers and 13 controls were compared using single voxel, short TE, 1H MRS from the posterior cingulate gyrus. The mutation carriers had an increased choline/creatine, p=0.003 and increased myoinositol/creatine ratio, p=0.003. 1H MRS identified differences in markers of glial activity and choline metabolism in pre- and early symptomatic carriers of a novel PRNP gene octapeptide insertion. These findings expand the possible diagnostic utility of 1H MRS in familial prion disorders.
PMCID: PMC3480551  PMID: 22612156
MRS; MRI; familial prion disorders; frontotemporal dementia
14.  The Alien Limb Phenomenon 
Journal of neurology  2013;260(7):1880-1888.
Alien limb phenomenon refers to involuntary motor activity of a limb in conjunction with the feeling of estrangement from that limb. Alien limb serves as a diagnostic feature of corticobasal syndrome.
Our objective was to determine the differential diagnoses of alien limb and to determine the features in a large group of patients with the alien limb with different underlying etiologies.
We searched the Mayo Clinic Medical Records Linkage system to identify patients with the diagnosis of alien limb seen between January 1, 1996, and July 11, 2011.
One hundred fifty patients with alien limb were identified. Twenty two were followed in the Alzheimer’s Disease Research Center. Etiologies of alien limb included corticobasal syndrome (n=108), stroke (n=14), Creutzfeldt Jacob disease (n=9), Hereditary diffuse leukoencephalopathy with spheroids (n=5), tumor (n=4), progressive multifocal leukoencephalopathy(n=2), demyelinating disease (n=2), progressive dementia not otherwise specified (n=2), posterior reversible encephalopathy syndrome (n=1), corpus callosotomy (n=1), intracerebral hemorrhage (n=1) and thalamic dementia (n=1). Ten of fourteen cerebrovascular cases were right hemisphere in origin. All cases involved the parietal lobe. Of the 44 patients with corticobasal syndrome from the Alzheimer’s Disease Research Center cohort, 22 had alien limb, and 73% had the alien limb affecting the left extremities. Left sided corticobasal syndrome was significantly associated with the presence of alien limb (p=0.004).
These findings support the notion that the alien limb phenomenon is partially related to damage underlying the parietal cortex, especially the right parietal, disconnecting it from other cortical areas.
PMCID: PMC3914666  PMID: 23572346
Alien limb; corticobasal syndrome
15.  C9ORF72 repeat expansions in cases with previously identified pathogenic mutations 
Neurology  2013;81(15):1332-1341.
To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases.
A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology.
We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations.
Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members.
PMCID: PMC3806926  PMID: 24027057
16.  Brain Injury Biomarkers Are Not Dependent on β-amyloid in Normal Elderly 
Annals of neurology  2013;73(4):472-480.
The new criteria for preclinical Alzheimer’s Disease (AD) proposed 3 stages: abnormal levels of β-amyloid (stage 1); stage 1 plus evidence of brain injury (stage 2); and stage 2 plus subtle cognitive changes (stage 3). However, a large group of subjects with normal β-amyloid biomarkers have evidence of brain injury; we labeled them as “suspected non-Alzheimer pathway” (sNAP) group. The characteristics of the sNAP group are poorly understood.
Using the preclinical AD classification, 430 cognitively normal subjects from the Mayo Clinic Study of Aging who underwent brain MR, 18fluorodeoxyglucose (FDG) and Pittsburgh compound B (PiB) positron emission tomography (PET) were evaluated with FDG PET regional volumetrics, MR regional brain volumetrics, white matter hyperintensity (WMH) volume and number of infarcts. We examined cross-sectional associations across AD preclinical stages, those with all biomarkers normal, and the sNAP group.
The sNAP group had a lower proportion (14%) with APOE ε4 genotype than the preclinical AD stages 2 + 3. The sNAP group did not show any group differences compared to stages 2 + 3 of the preclinical AD group on measures of FDG PET regional hypometabolism, MR regional brain volume loss, cerebrovascular imaging lesions, vascular risk factors, imaging changes associated with α-synucleinopathy or physical findings of parkinsonism.
Cognitively normal persons with brain injury biomarker abnormalities, with or without abnormal levels of β-amyloid, were indistinguishable on a variety of imaging markers, clinical features and risk factors. The initial appearance of brain injury biomarkers that occurs in cognitively normal persons with preclinical AD may not depend on β-amyloidosis.
PMCID: PMC3660408  PMID: 23424032
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
17.  Brain β-amyloid load approaches a plateau 
Neurology  2013;80(10):890-896.
To model the temporal trajectory of β-amyloid accumulation using serial amyloid PET imaging.
Participants, aged 70–92 years, were enrolled in either the Mayo Clinic Study of Aging (n = 246) or the Mayo Alzheimer's Disease Research Center (n = 14). All underwent 2 or more serial amyloid PET examinations. There were 205 participants classified as cognitively normal and 55 as cognitively impaired (47 mild cognitive impairment and 8 Alzheimer dementia). We measured baseline amyloid PET-relative standardized uptake values (SUVR) and, for each participant, estimated a slope representing their annual amyloid accumulation rate. We then fit regression models to predict the rate of amyloid accumulation given baseline amyloid SUVR, and evaluated age, sex, clinical group, and APOE as covariates. Finally, we integrated the amyloid accumulation rate vs baseline amyloid PET SUVR association to an amyloid PET SUVR vs time association.
Rates of amyloid accumulation were low at low baseline SUVR. Rates increased to a maximum at baseline SUVR around 2.0, above which rates declined—reaching zero at baseline SUVR above 2.7. The rate of amyloid accumulation as a function of baseline SUVR had an inverted U shape. Integration produced a sigmoid curve relating amyloid PET SUVR to time. The average estimated time required to travel from an SUVR of 1.5–2.5 is approximately 15 years.
This roughly 15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.
PMCID: PMC3653215  PMID: 23446680
18.  Cardiac Disease Increases Risk of Non-amnestic Mild Cognitive Impairment: Stronger impact in women 
JAMA neurology  2013;70(3):374-382.
Non-amnestic mild cognitive impairment (naMCI), a putative precursor of vascular and other non-Alzheimer’s disease dementias, is hypothesized to have a vascular etiology. We investigated the association of cardiac disease with amnestic (aMCI) and non-amnestic (naMCI) MCI.
A prospective, population-based, cohort study with a median 4.0 years of follow-up.
Olmsted County, Minnesota.
Participants were evaluated at baseline and every 15 months using the Clinical Dementia Rating scale, a neurological evaluation, and neuropsychological testing. A diagnosis of normal cognition, MCI, or dementia was made by consensus. Cardiac disease at baseline was assessed from the participant’s medical records.
Main outcome measures
Incident MCI, aMCI, naMCI.
Among 1,450 subjects free of MCI or dementia at baseline, 366 developed MCI. Cardiac disease was associated with an increased risk of naMCI (hazard ratio [HR] 95% confidence interval; 1.77 [1.16–2.72]). However, the association varied by sex (P for interaction = .02). Cardiac disease was associated with an increased risk of naMCI (HR, 3.07 [1.58–5.99]) in women, but not in men (HR, 1.16 [0.68–1.99]. Cardiac disease was not associated with any MCI or aMCI.
Cardiac disease is an independent risk factor for naMCI, within sex comparisons showed a stronger association in women. Prevention and management of cardiac disease and vascular risk factors may reduce the risk of naMCI.
PMCID: PMC3734560  PMID: 23358884
19.  Successful Aging: Definitions and Prediction of Longevity and Conversion to Mild Cognitive Impairment 
To examine alternative models of defining and characterizing successful aging.
A retrospective cohort study
Olmsted County, MN.
560 community-dwelling non-demented adults, aged 65 years and older.
Three models were developed. Each model examined subtests in four cognitive domains: memory, attention/executive function, language, and visual-spatial skills. A composite domain score was generated for each of the four domains. In Model 1, a global z-score was further generated from the four cognitive domains, and subjects with mean global z-score in the top 10% were classified as “successful agers” whereas those in the remaining 90% were classified as “typical agers”. In Model 2, subjects with all 4 domain scores above the 50th percentile were classified as “successful agers.” In Model 3, a primary neuropsychological variable was selected from each domain, and subjects whose score remained above minus 1 SD compared to norms for young adults were labeled successful agers. Validation tests were conducted to determine the ability of each model to predict survival and conversion to mild cognitive impairment (MCI).
Model 1 showed 65% lower mortality in successful agers compared to typical agers, and also a 25% lower conversion rate to MCI.
Model 1 was most strongly associated with longevity and cognitive decline; as such, it can be useful in investigating various predictors of successful aging, including plasma level, APOE genotype, and neuroimaging measurements.
PMCID: PMC3918503  PMID: 21606901
successful aging; optimal aging; longevity; cognitive decline
20.  Frontal asymmetry in behavioral variant FTD: clinicoimaging & pathogenetic correlates 
Neurobiology of aging  2012;34(2):636-639.
We aimed to assess associations between clinical, imaging, pathological and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into three groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared to left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
PMCID: PMC3404265  PMID: 22502999
Frontotemporal dementia; frontal lobes; MRI; asymmetry; microtubule associated protein tau; progranulin; C9ORF72; pathology
21.  Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia 
Brain  2013;136(2):455-470.
Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A–D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.
PMCID: PMC3572926  PMID: 23358603
TDP-43 type C; corticospinal tract; MRI; semantic dementia; right temporal lobe
22.  Selective Worsening of Brain Injury Biomarker Abnormalities in Cognitively Normal Elderly with β-amyloidosis 
JAMA neurology  2013;70(8):10.1001/jamaneurol.2013.182.
The appearance of β-amyloidosis and brain injury biomarkers in cognitively normal (CN) persons is thought to define risk for the future development of cognitive impairment due to Alzheimer’s disease (AD), but their interaction is poorly understood.
To test the hypothesis that the joint presence of β-amyloidosis and brain injury biomarkers would lead to more rapid neurodegeneration.
Longitudinal Cohort Study
Population-based Mayo Clinic Study of Aging.
191 CN persons (median age 77, range 71–93) in the Mayo Clinic Study of Aging who underwent MR, FDG PET and PiB PET imaging at least twice 15 months apart. Subjects were grouped according to the recommendations of the NIA-AA Preclinical AD criteria, based on the presence of β-amyloidosis, defined as a PiB PET SUVr >1.5, alone (Stage 1) or with brain injury (stage 2+3), defined as hippocampal atrophy or FDG hypometabolism. We also studied a group of MCI (n=17) and dementia (n=9) patients from the Mayo Clinic Study of Aging or the Mayo Alzheimer Center with similar follow-up times who had had comparable imaging and who all had PiB PET SUVr >1.5.
Main Outcome Measures
Rate of change of cortical volume on volumetric MR scans and rate of change of glucose metabolism on FDG PET scans.
There were 25 CN subjects with both high PiB retention and low hippocampal volume or FDG hypometabolism at baseline (Preclinical AD stages 2+3). On follow-up scans, the Preclinical AD stages 2+3 subjects had greater loss of medial temporal lobe volume and greater glucose hypometabolism in the medial temporal lobe compared to other CN groups. The changes were similar to the cognitively impaired participants. Extra-temporal regions did not show similar changes.
Higher rates of medial temporal neurodegeneration occurred in CN individuals who, on their initial scans, had abnormal levels of both β-amyloid and brain injury biomarkers.
PMCID: PMC3884555  PMID: 23797806
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
23.  Caloric Intake, Aging, and Mild Cognitive Impairment: A Population-Based Study 
In a population-based case-control study, we examined whether moderate and high caloric intakes are differentially associated with the odds of having mild cognitive impairment (MCI). The sample was derived from the Mayo Clinic Study of Aging in Olmsted County, Minnesota. Non-demented study participants aged 70–92 years (1,072 cognitively normal persons and 161 subjects with MCI) reported their caloric consumption within 1 year of the date of interview by completing a Food Frequency Questionnaire. An expert consensus panel classified each subject as either cognitively normal or having MCI based on published criteria. We conducted multivariable logistic regression analyses to compute odds ratios (OR) and 95% confidence intervals (95% CI) after adjusting for age, sex, education, depression, medical comorbidity, and body mass index. We also conducted stratified analyses by apolipoprotein E ε4 genotype status. Analyses were conducted in tertiles of caloric intake: 600 to <1,526 kcals per day (reference group); 1,526 to 2,143 kcals per day (moderate caloric intake group); and >2,143 kcals per day (high caloric intake group). In the primary analysis, there was no significant difference between the moderate caloric intake group and the reference group (OR 0.87, 95% CI 0.53–1.42, p = 0.57). However, high caloric intake was associated with a nearly two-fold increased odds of having MCI (OR 1.96, 95% CI 1.26–3.06, p = 0.003) as compared to the reference group. Therefore, high caloric intake was associated with MCI but not moderate caloric intake. This association is not necessarily a cause-effect relationship.
PMCID: PMC3578975  PMID: 23234878
aging; APOE ε4 genotype; caloric intake; mild cognitive impairment; population-based
24.  Polysomnographic Findings in Dementia With Lewy Bodies 
The neurologist  2013;19(1):1-6.
The clinical features of dementia with Lewy bodies (DLB) during wakefulness are well known. Other than REM sleep behavior disorder (RBD), only limited data exists on other sleep disturbances and disorders in DLB. We sought to characterize the polysomnographic (PSG) findings in a series of DLB patients with sleep-related complaints.
Retrospective study of patients with DLB who underwent clinical PSG at Mayo Clinic Rochester or Mayo Clinic Jacksonville over an almost 11 year span for evaluation of dream enactment behavior, excessive nocturnal movements, sleep apnea, hypersomnolence, or insomnia. The following variables were analyzed: respiratory disturbance index (RDI) in disordered breathing events/hour, periodic limb movement arousal index (PLMAI), arousals for no apparent reason (AFNAR), total arousal index (TAI), presence of REM sleep without atonia (RSWA), and percent sleep efficiency (SE).
Data on 78 patients (71M, 7F) were analyzed. The mean age was 71 ± 8 years. Seventy-five (96%) patients had histories of recurrent dream enactment during sleep with 83% showing confirmation of RSWA +/- dream enactment during PSG. Mean RDI = 11.9 ± 5.8, PLMAI = 5.9 ± 8.5, AFNARI = 10.7 ± 12.0, and TAI = 26.6 ± 17.4. SE was <80% in 72% of the sample, <70% in 49%, and <60% in 24%. In patients who did not show evidence of significant disordered breathing (23 with RDI<5), 62% of arousals were AFNARs. In those patients who had significant disordered breathing (55 with RDI ≥ 5), 36% of arousals were AFNARs. Six patients underwent evaluations with PSG plus MSLT. Two patients had mean initial sleep latencies less than five minutes, and both had RDI<5. No patient had any sleep onset rapid eye movement periods. Nineteen patients have undergone neuropathologic examination, and 18 have had limbic- or neocortical-predominant Lewy body pathology. One had progressive supranuclear palsy, but no REM sleep was recorded in prior PSG.
In patients with DLB and sleep-related complaints, several sleep disturbances in addition to RBD are frequently present. In this sample, about three quarters had a significant number of arousals not accounted for by a movement or breathing disturbance, and the primary sleep disorders do not appear to entirely account for the poor sleep efficiency in DLB, especially in those without a significant breathing disorder. Further studies are warranted to better understand the relationship between disturbed sleep, arousal and DLB; such characterization may provide insights into potential avenues of treatment of symptoms which could impact quality of life.
PMCID: PMC3587292  PMID: 23269098
Sleep disorders; REM sleep behavior disorder; dementia with Lewy bodies; synucleinopathy
25.  Length of normal alleles of C9ORF72 GGGGCC repeat do not influence disease phenotype 
Neurobiology of aging  2012;33(12):2950.e5-2950.e7.
Expansions of the non-coding GGGGCC hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene were recently identified as the long sought-after cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) on chromosome 9p. In this study we aimed to determine whether the length of the normal - unexpanded - allele of the GGGGCC repeat in C9ORF72 plays a role in the presentation of disease or affects age at onset in C9ORF72 mutation carriers. We also studied whether the GGGGCC repeat length confers risk or affects age at onset in FTD and ALS patients without C9ORF72 repeat expansions. C9ORF72 genotyping was performed in 580 FTD, 995 ALS and 160 FTD-ALS patients and 1444 controls, leading to the identification of 211 patients with pathogenic C9ORF72 repeat expansions and an accurate quantification of the length of the normal alleles in all patients and controls. No meaningful association between the repeat length of the normal alleles of the GGGGCC repeat in C9ORF72 and disease phenotype or age at onset was observed in C9ORF72 mutation carriers or non-mutation carriers.
PMCID: PMC3617405  PMID: 22840558
Amyotrophic lateral sclerosis; Frontotemporal Dementia; C9ORF72; Repeat-expansion disease; Association study

Results 1-25 (101)