Search tips
Search criteria

Results 1-25 (66)

Clipboard (0)
Year of Publication
more »
Document Types
1.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
PMCID: PMC3812105  PMID: 24107861
2.  Diabetes and Elevated HbA1c levels are Associated with Brain Hypometabolism but not Amyloid Accumulation 
Dysfunctional insulin signaling may affect brain metabolism or amyloid deposition. We investigated the associations of type 2 diabetes with amyloid accumulation measured using 11C-Pittsburgh Compound B (PiB) and brain hypometabolism measured using 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET).
We studied a sample of non-demented participants from the population-based Mayo Clinic Study of Aging. All subjects underwent MRI, amyloid PET and FDG PET. Alzheimer’s disease (AD) signature and region of interest (ROI) measures for PiB retention ratio and FDG ratio were measured. Diabetes was assessed from the Rochester Epidemiology Project medical records-linkage system.
Among 749 participants (median age 79.0 years; 56.5% male, 81.0% cognitively normal; 20.6% diabetics), FDG hypometabolism (FDG ratio < 1.31) in the AD signature meta-ROI was more common in diabetics (48.1%) than in non-diabetics (28.9%; p <0.001). The median FDG ratio was lower in diabetics vs. non-diabetics in the AD signature meta-ROI (1.32 vs. 1.40, p < 0.001), and in the angular (1.40 vs. 1.48, p < 0.001) and posterior cingulate gyri ROIs (1.63 vs. 1.72, p < 0.001). The odds ratio (OR [95% confidence interval]) for abnormal AD signature FDG hypometabolism was elevated (OR, 2.28 [1.56, 3.33]) in diabetics vs. non-diabetics after adjustment for age, sex, and education, and after additional adjustment for Apolipoprotein ε4 allele, glycemic level, and cognitive status (OR, 1.69 [1.10, 2.60]). However, AD signature PiB retention ratio was similar in diabetics vs. non-diabetics (OR, 1.03 [0.71, 1.51]; p = 0.87). In post-hoc analyses in non-diabetics, a 1% increase in HBA1c was associated with greater AD signature hypometabolism in cognitively normal subjects (OR, 1.93 [1.03, 3.62; p = 0.04]) and in the total cohort (OR 1.59 [0.92, 2.75; p = 0.10).
Diabetes and poor glycemic control in non-diabetics may enhance glucose hypometabolism in AD signature regions. These factors should be investigated in longitudinal studies for their role in detecting onset of symptoms in AD.
PMCID: PMC4011952  PMID: 24652830
Diabetes; cerebral glucose metabolism; FDG- and PiB-PET imaging; hemoglobin A1c; amyloid accumulation
3.  Midbrain atrophy is not a biomarker of PSP pathology 
Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), although it is unclear whether it is associated with the PSP syndrome (PSPS) or PSP pathology. We aimed to determine whether midbrain atrophy is a useful biomarker of PSP pathology, or whether it is only associated with typical PSPS.
We identified all autopsy-confirmed subjects with the PSP clinical phenotype (i.e. PSPS) or PSP pathology and a volumetric MRI. Of 24 subjects with PSP pathology, 11 had a clinical diagnosis of PSPS (PSP-PSPS), and 13 had a non-PSPS clinical diagnosis (PSP-other). Three subjects had PSPS and corticobasal degeneration pathology (CBD-PSPS). Healthy control and disease control groups (i.e. a group without PSPS or PSP pathology) and a group with CBD pathology and corticobasal syndrome (CBD-CBS) were selected. Midbrain area was measured in all subjects.
Midbrain area was reduced in each group with clinical PSPS (with and without PSP pathology). The group with PSP pathology and non-PSPS clinical syndromes did not show reduced midbrain area. Midbrain area was smaller in the subjects with PSPS compared to those without PSPS (p<0.0001), with an area under the receiver-operator-curve of 0.99 (0.88,0.99). A midbrain area cut-point of 92 mm2 provided optimum sensitivity (93%) and specificity (89%) for differentiation.
Midbrain atrophy is associated with the clinical presentation of PSPS, but not with the pathological diagnosis of PSP in the absence of the PSPS clinical syndrome. This finding has important implications for the utility of midbrain measurements as diagnostic biomarkers for PSP pathology.
PMCID: PMC3773014  PMID: 23746093
Progressive supranuclear palsy; tau; neuropathology; MRI; midbrain
4.  Criteria for Mild Cognitive Impairment Due to Alzheimer’s Disease in the Community 
Annals of neurology  2013;74(2):199-208.
The newly proposed National Institute on Aging-Alzheimer’s Association (NIA-AA) criteria for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD) suggest a combination of clinical features and biomarker measures, but their performance in the community is not known.
The Mayo Clinic Study of Aging (MCSA) is a population-based longitudinal study of non-demented subjects in Olmsted County, Minnesota. A sample of 154 MCI subjects from the MCSA was compared to a sample of 58 amnestic MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI 1) to assess the applicability of the criteria in both settings and to assess their outcomes.
In the MCSA, 14% and in ADNI 1 16% of subjects were biomarker negative. In addition, 14% of the MCSA and 12% of ADNI 1 subjects had evidence for amyloid deposition only, while 43% of MCSA and 55% of ADNI 1 subjects had evidence for amyloid deposition plus neurodegeneration (MRI atrophy, FDG PET hypometabolism or both). However, a considerable number of subjects had biomarkers inconsistent with the proposed AD model, e.g., 29% of MCSA subjects and 17% of the ADNI 1 subjects had evidence for neurodegeneration without amyloid deposition. These subjects may not be on an AD pathway. Neurodegeneration appears to be a key factor in predicting progression relative to amyloid deposition alone.
The NIA-AA criteria apply to most MCI subjects in both the community and clinical trials settings however, a sizeable proportion of subjects had conflicting biomarkers which may be very important and need to be explored.
PMCID: PMC3804562  PMID: 23686697
5.  MRI and MRS predictors of mild cognitive impairment in a population-based sample 
Neurology  2013;81(2):126-133.
To investigate MRI and proton magnetic resonance spectroscopy (MRS) predictors of mild cognitive impairment (MCI) in cognitively normal older adults.
Subjects were cognitively normal older adults (n = 1,156) who participated in the population-based Mayo Clinic Study of Aging MRI/MRS study from August 2005 to December 2010 and had at least one annual clinical follow-up. Single-voxel MRS was performed from the posterior cingulate gyri, and hippocampal volumes and white matter hyperintensity volumes were quantified using automated methods. Brain infarcts were assessed on MRI. Cox proportional hazards regression, with age as the time scale, was used to assess the effect of MRI and MRS markers on the risk of progression from cognitively normal to MCI. Linear mixed-effects models were used to assess the effect of MRI and MRS markers on cognitive decline.
After a median follow-up of 2.8 years, 214 participants had progressed to MCI or dementia (estimated incidence rate = 6.1% per year; 95% confidence interval = 5.3%–7.0%). In univariable modeling, hippocampal volume, white matter hyperintensity volume, and N-acetylaspartate/myo-inositol were significant predictors of MCI in cognitively normal older adults. In multivariable modeling, only decreased hippocampal volume and N-acetylaspartate/myo-inositol were independent predictors of MCI. These MRI/MRS predictors of MCI as well as infarcts were associated with cognitive decline (p < 0.05).
Quantitative MRI and MRS markers predict progression to MCI and cognitive decline in cognitively normal older adults. MRS may contribute to the assessment of preclinical dementia pathologies by capturing neurodegenerative changes that are not detected by hippocampal volumetry.
PMCID: PMC3770173  PMID: 23761624
6.  MRS in Early and Presymptomatic Carriers of a Novel Octapeptide Repeat Insertion in the Prion Protein Gene 
To evaluate the proton MR spectroscopy (1H MRS) changes in carriers of a novel octapeptide repeat insertion in the Prion Protein Gene (PRNP) and family history of frontotemporal dementia with ataxia. Four at-risk mutation carriers and 13 controls were compared using single voxel, short TE, 1H MRS from the posterior cingulate gyrus. The mutation carriers had an increased choline/creatine, p=0.003 and increased myoinositol/creatine ratio, p=0.003. 1H MRS identified differences in markers of glial activity and choline metabolism in pre- and early symptomatic carriers of a novel PRNP gene octapeptide insertion. These findings expand the possible diagnostic utility of 1H MRS in familial prion disorders.
PMCID: PMC3480551  PMID: 22612156
MRS; MRI; familial prion disorders; frontotemporal dementia
7.  Brain Injury Biomarkers Are Not Dependent on β-amyloid in Normal Elderly 
Annals of neurology  2013;73(4):472-480.
The new criteria for preclinical Alzheimer’s Disease (AD) proposed 3 stages: abnormal levels of β-amyloid (stage 1); stage 1 plus evidence of brain injury (stage 2); and stage 2 plus subtle cognitive changes (stage 3). However, a large group of subjects with normal β-amyloid biomarkers have evidence of brain injury; we labeled them as “suspected non-Alzheimer pathway” (sNAP) group. The characteristics of the sNAP group are poorly understood.
Using the preclinical AD classification, 430 cognitively normal subjects from the Mayo Clinic Study of Aging who underwent brain MR, 18fluorodeoxyglucose (FDG) and Pittsburgh compound B (PiB) positron emission tomography (PET) were evaluated with FDG PET regional volumetrics, MR regional brain volumetrics, white matter hyperintensity (WMH) volume and number of infarcts. We examined cross-sectional associations across AD preclinical stages, those with all biomarkers normal, and the sNAP group.
The sNAP group had a lower proportion (14%) with APOE ε4 genotype than the preclinical AD stages 2 + 3. The sNAP group did not show any group differences compared to stages 2 + 3 of the preclinical AD group on measures of FDG PET regional hypometabolism, MR regional brain volume loss, cerebrovascular imaging lesions, vascular risk factors, imaging changes associated with α-synucleinopathy or physical findings of parkinsonism.
Cognitively normal persons with brain injury biomarker abnormalities, with or without abnormal levels of β-amyloid, were indistinguishable on a variety of imaging markers, clinical features and risk factors. The initial appearance of brain injury biomarkers that occurs in cognitively normal persons with preclinical AD may not depend on β-amyloidosis.
PMCID: PMC3660408  PMID: 23424032
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
8.  Brain β-amyloid load approaches a plateau 
Neurology  2013;80(10):890-896.
To model the temporal trajectory of β-amyloid accumulation using serial amyloid PET imaging.
Participants, aged 70–92 years, were enrolled in either the Mayo Clinic Study of Aging (n = 246) or the Mayo Alzheimer's Disease Research Center (n = 14). All underwent 2 or more serial amyloid PET examinations. There were 205 participants classified as cognitively normal and 55 as cognitively impaired (47 mild cognitive impairment and 8 Alzheimer dementia). We measured baseline amyloid PET-relative standardized uptake values (SUVR) and, for each participant, estimated a slope representing their annual amyloid accumulation rate. We then fit regression models to predict the rate of amyloid accumulation given baseline amyloid SUVR, and evaluated age, sex, clinical group, and APOE as covariates. Finally, we integrated the amyloid accumulation rate vs baseline amyloid PET SUVR association to an amyloid PET SUVR vs time association.
Rates of amyloid accumulation were low at low baseline SUVR. Rates increased to a maximum at baseline SUVR around 2.0, above which rates declined—reaching zero at baseline SUVR above 2.7. The rate of amyloid accumulation as a function of baseline SUVR had an inverted U shape. Integration produced a sigmoid curve relating amyloid PET SUVR to time. The average estimated time required to travel from an SUVR of 1.5–2.5 is approximately 15 years.
This roughly 15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.
PMCID: PMC3653215  PMID: 23446680
9.  Frontal asymmetry in behavioral variant FTD: clinicoimaging & pathogenetic correlates 
Neurobiology of aging  2012;34(2):636-639.
We aimed to assess associations between clinical, imaging, pathological and genetic features and frontal lobe asymmetry in behavioral variant frontotemporal dementia (bvFTD). Volumes of the left and right dorsolateral, medial and orbital frontal lobes were measured in 80 bvFTD subjects and subjects were classified into three groups according to the degree of asymmetry (asymmetric left, asymmetric right, symmetric) using cluster analysis. The majority of subjects were symmetric (65%), with 20% asymmetric left and 15% asymmetric right. There were no clinical differences across groups, although there was a trend for greater behavioral dyscontrol in right asymmetric compared to left asymmetric subjects. More widespread atrophy involving the parietal lobe was observed in the symmetric group. Genetic features differed across groups with symmetric frontal lobes associated with C9ORF72 and tau mutations, while asymmetric frontal lobes were associated with progranulin mutations. These findings therefore suggest that neuroanatomical patterns of frontal lobe atrophy in bvFTD are influenced by specific gene mutations.
PMCID: PMC3404265  PMID: 22502999
Frontotemporal dementia; frontal lobes; MRI; asymmetry; microtubule associated protein tau; progranulin; C9ORF72; pathology
10.  Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia 
Brain  2013;136(2):455-470.
Four subtypes of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions have been described (types A–D). Of these four subtypes, motor neuron disease is more commonly associated with type B pathology, but has also been reported with type A pathology. We have noted, however, the unusual occurrence of cases of type C pathology having corticospinal tract degeneration. We aimed to assess the severity of corticospinal tract degeneration in a large cohort of cases with type C (n = 31). Pathological analysis included semi-quantitation of myelin loss of fibres of the corticospinal tract and associated macrophage burden, as well as axonal loss, at the level of the medullary pyramids. We also assessed for motor cortex degeneration and fibre loss of the medial lemniscus/olivocerebellar tract. All cases were subdivided into three groups based on the degree of corticospinal tract degeneration: (i) no corticospinal tract degeneration; (ii) equivocal corticospinal tract degeneration; and (iii) moderate to very severe corticospinal tract degeneration. Clinical, genetic, pathological and imaging comparisons were performed across groups. Eight cases had no corticospinal tract degeneration, and 14 cases had equivocal to mild corticospinal tract degeneration. Nine cases, however, had moderate to very severe corticospinal tract degeneration with myelin and axonal loss. In these nine cases, there was degeneration of the motor cortex without lower motor neuron degeneration or involvement of other brainstem tracts. These cases most commonly presented as semantic dementia, and they had longer disease duration (mean: 15.3 years) compared with the other two groups (10.8 and 9.9 years; P = 0.03). After adjusting for disease duration, severity of corticospinal tract degeneration remained significantly different across groups. Only one case, without corticospinal tract degeneration, was found to have a hexanucleotide repeat expansion in the C9ORF72 gene. All three groups were associated with anterior temporal lobe atrophy on MRI; however, the cases with moderate to severe corticospinal tract degeneration showed right-sided temporal lobe asymmetry and greater involvement of the right temporal lobe and superior motor cortices than the other groups. In contrast, the cases with no or equivocal corticospinal tract degeneration were more likely to show left-sided temporal lobe asymmetry. For comparison, the corticospinal tract was assessed in 86 type A and B cases, and only two cases showed evidence of corticospinal tract degeneration without lower motor neuron degeneration. These findings confirm that there exists a unique association between frontotemporal lobar degeneration with type C pathology and corticospinal tract degeneration, with this entity showing a predilection to involve the right temporal lobe.
PMCID: PMC3572926  PMID: 23358603
TDP-43 type C; corticospinal tract; MRI; semantic dementia; right temporal lobe
11.  Selective Worsening of Brain Injury Biomarker Abnormalities in Cognitively Normal Elderly with β-amyloidosis 
JAMA neurology  2013;70(8):10.1001/jamaneurol.2013.182.
The appearance of β-amyloidosis and brain injury biomarkers in cognitively normal (CN) persons is thought to define risk for the future development of cognitive impairment due to Alzheimer’s disease (AD), but their interaction is poorly understood.
To test the hypothesis that the joint presence of β-amyloidosis and brain injury biomarkers would lead to more rapid neurodegeneration.
Longitudinal Cohort Study
Population-based Mayo Clinic Study of Aging.
191 CN persons (median age 77, range 71–93) in the Mayo Clinic Study of Aging who underwent MR, FDG PET and PiB PET imaging at least twice 15 months apart. Subjects were grouped according to the recommendations of the NIA-AA Preclinical AD criteria, based on the presence of β-amyloidosis, defined as a PiB PET SUVr >1.5, alone (Stage 1) or with brain injury (stage 2+3), defined as hippocampal atrophy or FDG hypometabolism. We also studied a group of MCI (n=17) and dementia (n=9) patients from the Mayo Clinic Study of Aging or the Mayo Alzheimer Center with similar follow-up times who had had comparable imaging and who all had PiB PET SUVr >1.5.
Main Outcome Measures
Rate of change of cortical volume on volumetric MR scans and rate of change of glucose metabolism on FDG PET scans.
There were 25 CN subjects with both high PiB retention and low hippocampal volume or FDG hypometabolism at baseline (Preclinical AD stages 2+3). On follow-up scans, the Preclinical AD stages 2+3 subjects had greater loss of medial temporal lobe volume and greater glucose hypometabolism in the medial temporal lobe compared to other CN groups. The changes were similar to the cognitively impaired participants. Extra-temporal regions did not show similar changes.
Higher rates of medial temporal neurodegeneration occurred in CN individuals who, on their initial scans, had abnormal levels of both β-amyloid and brain injury biomarkers.
PMCID: PMC3884555  PMID: 23797806
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
12.  Effect of Lifestyle Activities on AD Biomarkers and Cognition 
Annals of neurology  2012;72(5):730-738.
To investigate the effect of intellectual and physical activity on biomarkers of Alzheimer’s disease (AD) pathophysiology and cognition in a non-demented elderly population. The biomarkers evaluated were brain Aβ-amyloid load via PIB-PET, neuronal dysfunction via FDG-PET and neurodegeneration via Structural-MRI.
We studied 515 non-demented (428 cognitively normal and 87 MCI) participants in the population based Mayo Clinic Study of Aging who completed a 3T MRI, PET scans, APOE genotype, had lifestyle activity measures and cognition data available. The imaging measures computed were global PiB-PET uptake; global FDG-PET and MRI based hippocampal volume. We consolidated activity variables into lifetime intellectual, current intellectual and current physical activities. We used a global cognitive Z-score as a measure of cognition. We applied two independent methods – partial correlation analysis adjusted for age and gender and path analysis using structural equations to evaluate the associations between lifestyle activities, imaging biomarkers and global cognition.
None of the lifestyle variables correlated with the biomarkers and the path associations between lifestyle variables and biomarkers were not significant (p>0.05). On the other hand, all the biomarkers were correlated with global cognitive Z-score (p<0.05) and the path associations between (lifetime and current) intellectual activities and global Z-score were significant (p<0.01).
Intellectual and physical activity lifestyle factors were not associated with AD biomarkers but intellectual lifestyle factors explained variability in the cognitive performance in this non-demented population. This study provides evidence that lifestyle activities may delay the onset of dementia but do not significantly influence the expression of AD pathophysiology.
PMCID: PMC3539211  PMID: 23280791
Alzheimer’s disease; Imaging biomarkers; Lifestyle Activities
13.  Indicators of amyloid burden in a population-based study of cognitively normal elderly 
Neurology  2012;79(15):1570-1577.
Secondary prevention trials in subjects with preclinical Alzheimer disease may require documentation of brain amyloidosis. The identification of inexpensive and noninvasive screening variables that can identify individuals who have significant amyloid accumulation would reduce screening costs.
A total of 483 cognitively normal (CN) individuals, aged 70–92 years, from the population-based Mayo Clinic Study of Aging, underwent Pittsburgh compound B (PiB)–PET imaging. Logistic regression determined whether age, sex, APOE genotype, family history, or cognitive performance was associated with odds of a PiB retention ratio >1.4 and >1.5. Area under the receiver operating characteristic curve (AUROC) evaluated the discrimination between PiB-positive and -negative subjects. For each characteristic, we determined the number needed to screen in each age group (70–79 and 80–89) to identify 100 participants with PiB >1.4 or >1.5.
A total of 211 (44%) individuals had PiB >1.4 and 151 (31%) >1.5. In univariate and multivariate models, discrimination was modest (AUROC ∼0.6–0.7). Multivariately, age and APOE best predicted odds of PiB >1.4 and >1.5. Subjective memory complaints were similar to cognitive test performance in predicting PiB >1.5. Indicators of PiB positivity varied with age. Screening APOE ε4 carriers alone reduced the number needed to screen to enroll 100 subjects with PIB >1.5 by 48% in persons aged 70–79 and 33% in those aged 80–89.
Age and APOE genotype are useful predictors of the likelihood of significant amyloid accumulation, but discrimination is modest. Nonetheless, these results suggest that inexpensive and noninvasive measures could significantly reduce the number of CN individuals needed to screen to enroll a given number of amyloid-positive subjects.
PMCID: PMC3475629  PMID: 22972644
14.  Neuroimaging correlates of pathologically-defined atypical Alzheimer’s disease 
Lancet neurology  2012;11(10):868-877.
Atypical variants of Alzheimer’s disease (AD) have been pathologically defined based on the distribution of neurofibrillary tangles; hippocampal sparing (HpSp) AD shows minimal involvement of the hippocampus and limbic predominant (LP) AD shows neurofibrillary tangles restricted to the medial temporal lobe. We aimed to determine whether MRI patterns of atrophy differ across HpSp AD, LP AD and typical AD, and whether imaging could be a useful predictor of pathological subtype during life.
In this case-control study, we identified 177 patients who had been prospectively followed in the Mayo Clinic Alzheimer’s Disease Research Center, were demented during life, had AD pathology at autopsy (Braak stage ≥ IV, intermediate-high probability AD) and an antemortem MRI. Cases were assigned to one of three pathological subtypes (HpSp n=19, typical n=125, or LP AD n=33) based on neurofibrillary tangle counts and their ratio in association cortices to hippocampus, without reference to neuronal loss. Voxel-based morphometry and atlas-based parcellation were used to compare patterns of grey matter loss across groups, and to controls.
The severity of medial temporal and cortical grey matter atrophy differed across subtypes. The most severe medial temporal atrophy was observed in LP AD, followed by typical AD, and then HpSp AD. Conversely, the most severe cortical atrophy was observed in HpSp AD, followed by typical AD, and then LP AD. A ratio of hippocampal-to-cortical volume provided the best discrimination across all three AD subtypes. The majority of typical AD (98/125;78%) and LP AD (31/33;94%) subjects, but only 8/19 (42%) of the HpSp AD subjects, presented with a dominant amnestic syndrome.
Patterns of atrophy on MRI differ across the pathological subtypes of AD, suggesting that MR regional volumetrics reliably track the distribution of neurofibrillary tangle pathology and can predict pathological subtype during life.
US National Institutes of Health (National Institute on Aging)
PMCID: PMC3490201  PMID: 22951070
15.  Multimodality Imaging Characteristics of Dementia with Lewy Bodies 
Neurobiology of Aging  2011;33(9):2091-2105.
Dementia with Lewy bodies (DLB) is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD). Our objective was to determine whether the 11C–Pittsburgh Compound-B (PiB) retention and regional hypometabolism on PET and regional cortical atrophy on MRI are complementary in characterizing patients with DLB and differentiating them from AD. We studied age, gender and education matched patients with a clinical diagnosis of DLB (n=21), AD (n=21), and cognitively normal subjects (n=42). Hippocampal atrophy, global cortical PiB retention and occipital lobe metabolism in combination distinguished DLB from AD better than any of the measurements alone (area under the receiver operating characteristic=0.98).Five of the DLB and AD patients who underwent autopsy were distinguished through multimodality imaging. These data demonstrate that MRI and PiB PET contribute to characterizing the distinct pathological mechanisms in patients with AD compared to DLB. Occipital and posterior parietotemporal lobe hypometabolism is a distinguishing feature of DLB and this regional hypometabolic pattern is independent of the amyloid pathology.
PMCID: PMC3288845  PMID: 22018896
Dementia with Lewy bodies; MRI; PET; FDG; PiB; Alzheimer's disease
16.  Focal atrophy on MRI and neuropathologic classification of dementia with Lewy bodies 
Neurology  2012;79(6):553-560.
To determine the association between the focal atrophy measures on antemortem MRI and postmortem neuropathologic classification of dementia with Lewy bodies (DLB) using the Third Report of the DLB Consortium criteria.
We retrospectively identified 56 subjects who underwent antemortem MRI and had Lewy body (LB) pathology at autopsy. Subjects were pathologically classified as high (n = 25), intermediate (n = 22), and low likelihood DLB (n = 9) according to the Third Report of the DLB Consortium criteria. We included 2 additional pathologic comparison groups without LBs: one with low likelihood Alzheimer disease (AD) (control; n = 27) and one with high likelihood AD (n = 33). The associations between MRI-based volumetric measurements and the pathologic classification of DLB were tested with analysis of covariance by adjusting for age, sex, and MRI-to-death interval.
Antemortem hippocampal and amygdalar volumes increased from low to intermediate to high likelihood DLB (p < 0.001, trend test). Smaller hippocampal and amygdalar volumes were associated with higher Braak neurofibrillary tangle stage (p < 0.001). Antemortem dorsal mesopontine gray matter (GM) atrophy was found in those with high likelihood DLB compared with normal control subjects (p = 0.004) and those with AD (p = 0.01). Dorsal mesopontine GM volume decreased from low to intermediate to high likelihood DLB (p = 0.01, trend test).
Antemortem hippocampal and amygdalar volumes increase and dorsal mesopontine GM volumes decrease in patients with low to high likelihood DLB according to the Third Report of the DLB Consortium criteria. Patients with high likelihood DLB typically have normal hippocampal volumes but have atrophy in the dorsal mesopontine GM nuclei.
PMCID: PMC3413765  PMID: 22843258
17.  Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies 
Brain  2012;135(8):2470-2477.
Acetylcholinesterase inhibitors are commonly used to treat patients with dementia with Lewy bodies. Hippocampal atrophy on magnetic resonance imaging and amyloid-β load on positron emission tomography are associated with the Alzheimer’s disease-related pathology in patients with dementia with Lewy bodies. To date, few studies have investigated imaging markers that predict treatment response in patients with dementia with Lewy bodies. Our objective was to determine whether imaging markers of Alzheimer’s disease-related pathology such as hippocampal volume, brain amyloid-β load on 11C Pittsburgh compound B positron emission tomography predict treatment response to acetylcholinesterase inhibitors in patients with dementia with Lewy bodies. We performed a retrospective analysis on consecutive treatment-naive patients with dementia with Lewy bodies (n = 54) from the Mayo Clinic Alzheimer’s Disease Research Centre who subsequently received acetylcholinesterase inhibitors and underwent magnetic resonance imaging with hippocampal volumetry. Baseline and follow-up assessments were obtained with the Mattis Dementia Rating Scale. Subjects were divided into three groups (reliable improvement, stable or reliable decline) using Dementia Rating Scale reliable change indices determined previously. Associations between hippocampal volumes and treatment response were tested with analysis of covariance adjusting for baseline Dementia Rating Scale, age, gender, magnetic resonance field strength and Dementia Rating Scale interval. Seven subjects underwent 11C Pittsburgh compound B imaging within 12 weeks of magnetic resonance imaging. Global cortical 11C Pittsburgh compound B retention (scaled to cerebellar retention) was calculated in these patients. Using a conservative psychometric method of assessing treatment response, there were 12 patients with reliable decline, 29 stable cases and 13 patients with reliable improvement. The improvers had significantly larger hippocampi than those that declined (P = 0.02) and the stable (P = 0.04) group. An exploratory analysis demonstrated larger grey matter volumes in the temporal and parietal lobes in improvers compared with those who declined (P < 0.05). The two patients who had a positive 11C Pittsburgh compound B positron emission tomography scan declined and those who had a negative 11C Pittsburgh compound B positron emission tomography scan improved or were stable after treatment. Patients with dementia with Lewy bodies who do not have the imaging features of coexistent Alzheimer’s disease-related pathology are more likely to cognitively improve with acetylcholinesterase inhibitor treatment.
PMCID: PMC3407425  PMID: 22810436
dementia with Lewy bodies; acetylcholinesterase inhibitors; MRI; PiB; PET; amyloid
18.  Antemortem amyloid imaging and β-amyloid pathology in a case with dementia with Lewy Bodies 
Neurobiology of Aging  2010;33(5):878-885.
The association between antemortem [11C]-Pittsburgh Compound B (PiB) retention and β-amyloid (Aβ) load, Lewy body (LB) and neurofibrillary tangle (NFT) densities were investigated in a pathologically confirmed case of dementia with LB (DLB). 76-year-old man presenting with a clinical diagnosis of DLB had undergone PiB–positron emission tomography (PET), 18F FDG-PET and MRI 18 months before death. The pathologic diagnosis was DLB neocortical-type with low-likelihood of Alzheimer's disease by NIA-Reagan criteria. Sections from regions of interest (ROI) on post-mortem examination were studied. A significant correlation was found between cortical Aβ density and PiB retention in the 17 corresponding ROIs (r=0.899; p<0.0001). Bielschowsky silver stain revealed mostly sparse neocortical neuritic plaques; whereas diffuse plaques were frequent. There was no correlation between LB density and PiB retention (r=0.13; p=0.66); nor between NFT density and PiB retention (r=−0.36; p=0.17). The ROI-based analysis of imaging and histopathological data confirms that PiB uptake on PET is a specific marker for Aβ density, but cannot differentiate neuritic from diffuse amyloid plaques in this case with DLB.
PMCID: PMC3026854  PMID: 20961664
Dementia with Lewy bodies; amyloid imaging; PET; pathology; amyloid
19.  Comparison of imaging biomarkers in ADNI versus the Mayo Clinic Study of Aging 
Archives of neurology  2012;69(5):614-622.
To determine whether MRI measurements observed in the Alzheimer's Disease Neuroimaging Initiative (ADNI; convenience-sample) differ from those observed in the Mayo Clinic Study of Aging (MCSA; population-based sample).
Comparison of two samples.
59 recruiting sites for the ADNI in US/Canada, and the MCSA, a population-based cohort in Olmsted County, MN.
Cognitively normal (CN) subjects and amnestic mild cognitive impairment (aMCI) subjects were selected from the ADNI convenience cohort and MCSA population-based cohort. Two samples were selected; the first was a simple random sample of subjects from both cohorts in the same age range, and the second applied matching for age, sex, education, apolipoprotein E genotype, and Mini-Mental State Examination.
Main outcome measures
Baseline hippocampal volumes and annual percent decline in hippocampal volume.
In the population-based sample, MCSA subjects were older, less educated, performed worse on MMSE, and less often had family history of AD than ADNI subjects. Baseline hippocampal volumes were larger in ADNI compared to MCSA CN subjects in the random sample, although no differences were observed after matching. Rates of decline in hippocampal volume were greater in ADNI compared to MCSA for both CN and aMCI, even after matching.
Rates of decline in hippocampal volume suggest that ADNI subjects have more aggressive brain pathology than MCSA subjects, and hence may not be representative of the general population. These findings have implications for treatment trials that employ ADNI-like recruitment mechanisms and for studies validating new diagnostic criteria for AD in its various stages.
PMCID: PMC3569033  PMID: 22782510
20.  Characterization of a Family With c9FTD/ALS Associated With the GGGGCC Repeat Expansion in C9ORF72 
Archives of neurology  2012;69(9):1164-1169.
The hexanucleotide repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene was recently discovered as the pathogenic mechanism underlying many families with frontotemporal dementia (FTD) and/or amyotrophic lateral sclerosis (ALS) linked to chromosome 9 (c9FTD/ALS). We report the clinical, neuropsychological, and neuroimaging findings of a family with the C9ORF72 mutation and clinical diagnoses bridging the FTD, parkinsonism and ALS spectrum.
To characterize the antemortem characteristics of a family with c9FTD/ALS associated with the GGGGCC repeat expansion in C9ORF72
Clinical series.
Tertiary care academic medical center.
The members of the family affected by the mutation with features of FTD and/or ALS.
Main Outcome Measures
Clinical, neuropsychological, and neuroimaging assessments.
All three examined subjects had the hexanucleotide expansion detected in C9ORF72. All had personality/behavioral changes early in the course of the disease. One case had levodopa-unresponsive parkinsonism, and one had ALS. MRI showed symmetric bilateral frontal, temporal, insular and cingulate atrophy.
This report highlights the clinical and neuroimaging characteristics of a family with c9FTD/ALS. Further studies are needed to better understand the phenotypical variability and the clinico-neuroimaging-neuropathologic correlations.
PMCID: PMC3625860  PMID: 22637471
21.  Patterns of Brain Atrophy in Clinical Variants of Frontotemporal Lobar Degeneration 
The clinical syndromes of frontotemporal lobar degeneration include behavioral variant frontotemporal dementia (bvFTD) and semantic (SV-PPA) and nonfluent variants (NF-PPA) of primary progressive aphasia. Using magnetic resonance imaging (MRI), tensor-based morphometry (TBM) was used to determine distinct patterns of atrophy between these three clinical groups.
Twenty-seven participants diagnosed with bvFTD, 16 with SV-PPA, and 19 with NF-PPA received baseline and follow-up MRI scans approximately 1 year apart. TBM was used to create three-dimensional Jacobian maps of local brain atrophy rates for individual subjects.
Regional analyses were performed on the three-dimensional maps and direct comparisons between groups (corrected for multiple comparisons using permutation tests) revealed significantly greater frontal lobe and frontal white matter atrophy in the bvFTD relative to the SV-PPA group (p < 0.005). The SV-PPA subjects exhibited significantly greater atrophy than the bvFTD in the fusiform gyrus (p = 0.007). The NF-PPA group showed significantly more atrophy in the parietal lobes relative to both bvFTD and SV-PPA groups (p < 0.05). Percent volume change in ventromedial prefrontal cortex was significantly associated with baseline behavioral symptomatology.
The bvFTD, SV-PPA, and NF-PPA groups displayed distinct patterns of progressive atrophy over a 1-year period that correspond well to the behavioral disturbances characteristic of the clinical syndromes. More specifically, the bvFTD group showed significant white matter contraction and presence of behavioral symptoms at baseline predicted significant volume loss of the ventromedial prefrontal cortex.
PMCID: PMC3609420  PMID: 23306166
Frontotemporal dementia; Primary progressive aphasia; Longitudinal study; Magnetic resonance imaging; Tensor-based morphometry; White matter
22.  Shapes of the Trajectories of Five Major Biomarkers of Alzheimer’s Disease 
Archives of neurology  2012;69(7):856-867.
To characterize the shape of the trajectories of Alzheimer’s Disease (AD) biomarkers as a function of MMSE.
Longitudinal registries from the Mayo Clinic and the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Two different samples (n=343 and n=598) were created that spanned the cognitive spectrum from normal to AD dementia. Subgroup analyses were performed in members of both cohorts (n=243 and n=328) who were amyloid positive at baseline.
Main Outcome Measures
The shape of biomarker trajectories as a function of MMSE, adjusted for age, was modeled and described as baseline (cross-sectional) and within-subject longitudinal effects. Biomarkers evaluated were cerebro spinal fluid (CSF) Aβ42 and tau; amyloid and fluoro deoxyglucose position emission tomography (PET) imaging, and structural magnetic resonance imaging (MRI).
Baseline biomarker values generally worsened (i.e., non-zero slope) with lower baseline MMSE. Baseline hippocampal volume, amyloid PET and FDG PET values plateaued (i.e., non-linear slope) with lower MMSE in one or more analyses. Longitudinally, within-subject rates of biomarker change were associated with worsening MMSE. Non-constant within-subject rates (deceleration) of biomarker change were found in only one model.
Biomarker trajectory shapes by MMSE were complex and were affected by interactions with age and APOE status. Non-linearity was found in several baseline effects models. Non-constant within-subject rates of biomarker change were found in only one model, likely due to limited within-subject longitudinal follow up. Creating reliable models that describe the full trajectories of AD biomarkers will require significant additional longitudinal data in individual participants.
PMCID: PMC3595157  PMID: 22409939
Alzheimer’s disease biomarkers; Magnetic Resonance Imaging; cerebro spinal fluid; amyloid PET imaging; FDG PET imaging
23.  An Operational Approach to NIA-AA Criteria for Preclinical Alzheimer’s Disease 
Annals of neurology  2012;71(6):765-775.
A workgroup commissioned by the Alzheimer’s Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer’s disease (AD). We performed a preliminary assessment of these guidelines.
We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cut-points. A group of 450 cognitively normal (CN) subjects from a population based sample was used to develop cognitive cut-points and to assess population frequencies of the different preclinical AD stages using different cut-point criteria.
The new criteria subdivide the preclinical phase of AD into stages 1–3. To classify our CN subjects, two additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected Non-AD Pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cut-points corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0; 16% stage 1; 12 % stage 2; 3% stage 3; and 23% SNAP.
This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving just 3% unclassified. Future longitudinal validation of the criteria will be important.
PMCID: PMC3586223  PMID: 22488240
24.  Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects?☆ 
NeuroImage : Clinical  2013;2:249-257.
The objective of our study was to evaluate whether cognitively normal (CN) elderly participants showing elevated cortical beta-amyloid (Aβ) deposition have a consistent neuroanatomical signature of brain atrophy that may characterize preclinical Alzheimer's disease (AD). 115 CN participants who were Aβ-positive (CN +) by amyloid PET imaging; 115 CN participants who were Aβ-negative (CN −); and 88 Aβ-positive mild cognitive impairment or AD participants (MCI/AD +) were identified. Cortical thickness (FreeSurfer) and gray matter volume (SPM5) were measured for 28 regions-of-interest (ROIs) across the brain and compared across groups. ROIs that best discriminated CN − from CN + differed for FreeSurfer cortical thickness and SPM5 gray matter volume. Group-wise discrimination was poor with a high degree of uncertainty in terms of the rank ordering of ROIs. In contrast, both techniques showed strong and consistent findings comparing MCI/AD + to both CN − and CN + groups, with entorhinal cortex, middle and inferior temporal lobe, inferior parietal lobe, and hippocampus providing the best discrimination for both techniques. Concordance across techniques was higher for the CN − and CN + versus MCI/AD + comparisons, compared to the CN − versus CN + comparison. The weak and inconsistent nature of the findings across technique in this study cast doubt on the existence of a reliable neuroanatomical signature of preclinical AD in elderly PiB-positive CN participants.
► We measured atrophy in cognitively normal subjects with amyloid deposition (CN +). ► Findings in CN + subjects were weak and disconcordant across Freesurfer and SPM5. ► Concordance across techniques was higher when assessing Alzheimer disease subjects. ► Evidence for a neuroanatomical signature of preclinical AD in CN + subjects is weak.
PMCID: PMC3778266  PMID: 24179779
Amyloid; Preclinical; Alzheimer's disease; Freesurfer; Voxel-based morphometry; Cognitively normal
25.  Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia 
Journal of Molecular Neuroscience  2011;45(3):372-378.
Pathology underlying behavioral variant frontotemporal dementia (bvFTD) is heterogeneous, with the most common pathologies being Pick’s disease (PiD), corticobasal degeneration (CBD), and FTLD-TDP type 1. Clinical features are unhelpful in differentiating these pathologies. We aimed to determine whether imaging atrophy patterns differ across these pathologies in bvFTD subjects. We identified 15 bvFTD subjects that had volumetric MRI during life and autopsy: five with PiD, five CBD and five FTLD-TDP type 1. Voxel-based morphometry was used to assess atrophy patterns in each bvFTD group compared to 20 age and gender-matched controls. All three pathological groups showed grey matter loss in frontal lobes, although specific patterns of atrophy differed across groups: PiD showed widespread loss in frontal lobes with additional involvement of anterior temporal lobes; CBD showed subtle patterns of loss involving posterior lateral and medial superior frontal lobe; FTLD-TDP type 1 showed widespread loss in frontal, temporal and parietal lobes. Greater parietal loss was observed in FTLD-TDP type 1 compared to both other groups, and greater anterior temporal and medial frontal loss was observed in PiD compared to CBD. Imaging patterns of atrophy in bvFTD vary according to pathological diagnosis and may therefore be helpful in predicting these pathologies in bvFTD.
PMCID: PMC3401589  PMID: 21556732
Frontotemporal dementia; behavioral variant; Pick’s disease; corticobasal degeneration; TDP-43; atrophy; voxel-based morphometry; MRI

Results 1-25 (66)