PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Temporal Lobar Predominance of TDP-43 Neuronal Cytoplasmic Inclusions in Alzheimer Disease 
Acta Neuropathologica  2008;116(2):215-220.
TAR DNA binding protein-43 (TDP-43) immunoreactive neuronal inclusions are detected in 20–30% of Alzheimer disease (AD) brains, but the distribution of this pathology has not been rigorously studied. In this report we describe region-specific distribution and density of TDP-43 positive neuronal cytoplasmic inclusions (NCIs) in clinically demented individuals with high probability AD pathology, all with Braak neurofibrillary tangle stages of V or VI. Sections of hippocampus, amygdala, as well as temporal, frontal and parietal neocortex were analyzed with TDP-43 immunohistochemistry, and the density of NCIs was assessed using a semiquantitative scoring method. Of the 29 cases, 6 had TDP-43 positive NCIs in the amygdala only, and 7 had TDP-43 inclusions restricted to amygdala and hippocampus. In 16 cases TDP-43 immunoreactivity was more widespread, affecting temporal, frontal or parietal neocortex. These findings indicate that medial temporal lobe limbic structures are vulnerable to TDP-43 pathology in advanced AD, and that the amygdala appears to be the most vulnerable region. The distribution of the lesions in this cross-sectional analysis may suggest a progression of TDP-43 pathology in AD, with limbic structures in the medial temporal lobe affected first followed by higher order association cortices.
doi:10.1007/s00401-008-0400-4
PMCID: PMC3404722  PMID: 18592255
Amygdala; FTLD-U; FTLD-MND; frontotemporal dementia; motor neuron disease
2.  Anatomical Differences between CBS-Corticobasal degeneration and CBS-Alzheimer’s Disease 
We compare patterns of grey matter loss on MRI in subjects presenting as corticobasal syndrome (CBS) with Alzheimer disease pathology (CBS-AD) to those presenting as CBS with corticobasal degeneration pathology (CBS-CBD). Voxel-based morphometry was used to compare patterns of grey matter loss in pathologically confirmed CBS-AD subjects (n=5) and CBS-CBD subjects (n=6) to a group of normal controls (n=20), and to each other. Atlas based parcellation using the automated anatomic labeling atlas was also utilized in a region-of-interest analysis to account for laterality. The CBS-AD subjects were younger at the time of scan compared to CBS-CBD subjects (median: 60 years vs 69; P=0.04). After adjusting for age at time of MRI scan, the CBS-AD subjects showed loss in posterior frontal, temporal, and superior and inferior parietal lobes, while CBS-CBD showed more focal loss predominantly in the posterior frontal lobes, compared to controls. In both CBS-AD and CBS-CBD groups there was basal ganglia volume loss, yet relative sparing of hippocampi. On direct comparisons between the two subject groups, CBS-AD showed greater loss in both temporal and inferior parietal cortices than CBS-CBD. No regions showed greater loss in the CBS-CBD group compared to the CBS-AD group. These findings persisted when laterality was taken into account. In subjects presenting with CBS, prominent temporoparietal, especially posterior temporal and inferior parietal, atrophy may be a clue to the presence of underlying AD pathology.
doi:10.1002/mds.23062
PMCID: PMC2921765  PMID: 20629131
Voxel based morphometry; Alzheimer’s disease; Corticobasal syndrome; Corticobasal degeneration; Region-of-Interest
3.  Survival Profiles of Patients With Frontotemporal Dementia and Motor Neuron Disease 
Archives of neurology  2009;66(11):1359-1364.
Background
Frontotemporal dementia and amyotrophic lateral sclerosis are neurodegenerative diseases associated with TAR DNA-binding protein 43– and ubiquitin-immunoreactive pathologic lesions.
Objective
To determine whether survival is influenced by symptom of onset in patients with frontotemporal dementia and amyotrophic lateral sclerosis.
Design, Setting, and Patients
Retrospective review of patients with both cognitive impairment and motor neuron disease consecutively evaluated at 4 academic medical centers in 2 countries.
Main Outcome Measures
Clinical phenotypes and survival patterns of patients.
Results
A total of 87 patients were identified, including 60 who developed cognitive symptoms first, 19 who developed motor symptoms first, and 8 who had simultaneous onset of cognitive and motor symptoms. Among the 59 deceased patients, we identified 2 distinct subgroups of patients according to survival. Long-term survivors had cognitive onset and delayed emergence of motor symptoms after a long monosymptomatic phase and had significantly longer survival than the typical survivors (mean, 67.5 months vs 28.2 months, respectively; P<.001). Typical survivors can have simultaneous or discrete onset of cognitive and motor symptoms, and the simultaneous-onset patients had shorter survival (mean, 19.2 months) than those with distinct cognitive or motor onset (mean, 28.6 months) (P=.005).
Conclusions
Distinct patterns of survival profiles exist in patients with frontotemporal dementia and motor neuron disease, and overall survival may depend on the relative timing of the emergence of secondary symptoms.
doi:10.1001/archneurol.2009.253
PMCID: PMC2881327  PMID: 19901167
4.  Abnormal TDP-43 immunoreactivity in AD modifies clinicopathological and radiological phenotype 
Neurology  2008;70(19 Pt 2):1850-1857.
Background
TAR DNA-binding protein 43 (TDP-43) is one of the major disease proteins in frontotemporal lobar degeneration with ubiquitin immunoreactivity. Approximately 1/4 of subjects with pathologically confirmed Alzheimer's disease (AD) have abnormal TDP-43 (abTDP-43) immunoreactivity. The aim of this study was to determine if subjects with pathologically confirmed AD and abTDP-43 immunoreactivity have distinct clinical, neuropsychological, imaging or pathological features compared to subjects with AD without abTDP-43 immunoreactivity.
Methods
Eighty-four subjects were identified that had a pathological diagnosis of AD, neuropsychometric testing, and volumetric MRI. Immunohistochemistry for TDP-43 was performed on sections of hippocampus and medial temporal lobe, and positive cases were classified into one of three types. Neuropsychometric data was collated and compared in subjects with and without abTDP-43 immunoreactivity. Voxel-based morphometry was used to assess patterns of gray matter atrophy in subjects with and without abTDP-43 immunoreactivity compared to age and gender matched controls.
Results
Twenty-nine (34%) of the 84 AD subjects had abTDP-43 immunoreactivity. Those with abTDP-43 immunoreactivity were older at onset and death, and performed worse on the Clinical Dementia Rating scale, Mini-Mental State Examination and Boston Naming Test than subjects without abTDP-43 immunoreactivity. Subjects with and without abTDP-43 immunoreactivity had medial temporal and temporoparietal gray matter loss compared to controls; however, those with abTDP-43 immunoreactivity showed greater hippocampal atrophy. Multivariate logistic regression adjusting for age at death demonstrated that hippocampal sclerosis was the only pathological predictor of abTDP-43 immunoreactivity.
Conclusions
The presence of abTDP-43 immunoreactivity is associated with a modified AD clinicopathological and radiological phenotype.
doi:10.1212/01.wnl.0000304041.09418.b1
PMCID: PMC2779031  PMID: 18401022
5.  Progressive aphasia secondary to Alzheimer disease pathology: A clinicopathologic and MRI study 
Neurology  2008;70(1):25-34.
Background
The pathology causing progressive aphasia is typically a variant of frontotemporal lobar degeneration, especially with ubiquitin-positive-inclusions (FTLD-U). Less commonly the underlying pathology is Alzheimer disease (AD).
Objective
To compare clinicopathological and MRI features of subjects with progressive aphasia and AD pathology, to subjects with aphasia and FTLD-U pathology, and subjects with typical AD.
Methods
We identified 5 subjects with aphasia and AD pathology and 5 with aphasia and FTLD-U pathology with an MRI from a total of 216 aphasia subjects. Ten subjects with typical AD clinical features and AD pathology were also identified. All subjects with AD pathology underwent pathological re-analysis with TDP-43 immunohistochemistry. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aphasia cases with AD pathology, aphasia cases with FTLD-U, and typical AD cases with AD pathology, compared to a normal control group.
Results
All aphasic subjects had fluent speech output. However, those with AD pathology had better processing speed than those with FTLD-U pathology. Immunohistochemistry with TDP-43 antibodies was negative. VBM revealed grey matter atrophy predominantly in the temporoparietal cortices with notable sparing of the hippocampus in the aphasia with AD subjects. In comparison, the aphasic subjects with FTLD-U showed sparing of the parietal lobe. Typical AD subjects showed temporoparietal and hippocampal atrophy.
Conclusions
A temporoparietal pattern of atrophy on MRI in patients with progressive fluent aphasia and relatively preserved processing speed is suggestive of underlying AD pathology rather than FTLD-U.
doi:10.1212/01.wnl.0000287073.12737.35
PMCID: PMC2749307  PMID: 18166704
Primary progressive aphasia; Progressive non-fluent aphasia; Logopenic progressive aphasia; frontotemporal lobar degeneration with ubiquitin-only-immunoreactive changes; Voxel based morphometry

Results 1-5 (5)