PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies 
Neurology  2013;81(19):1681-1689.
Objective:
To determine structural MRI and digital microscopic characteristics of REM sleep behavior disorder in individuals with low-, intermediate-, and high-likelihood dementia with Lewy bodies (DLB) at autopsy.
Methods:
Patients with autopsy-confirmed low-, intermediate-, and high-likelihood DLB, according to the probability statement recommended by the third report of the DLB Consortium, and antemortem MRI, were identified (n = 75). The clinical history was assessed for presence (n = 35) and absence (n = 40) of probable REM sleep behavior disorder (pRBD), and patients' antemortem MRIs were compared using voxel-based morphometry. Pathologic burdens of phospho-tau, β-amyloid, and α-synuclein were measured in regions associated with early neuropathologic involvement, the hippocampus and amygdala.
Results:
pRBD was present in 21 patients (60%) with high-likelihood, 12 patients (34%) with intermediate-likelihood, and 2 patients (6%) with low-likelihood DLB. Patients with pRBD were younger, more likely to be male (p ≤ 0.001), and had a more frequent neuropathologic diagnosis of diffuse (neocortical) Lewy body disease. In the hippocampus and amygdala, phospho-tau and β-amyloid burden were lower in patients with pRBD compared with those without pRBD (p < 0.01). α-Synuclein burden did not differ in the hippocampus, but trended in the amygdala. Patients without pRBD had greater atrophy of temporoparietal cortices, hippocampus, and amygdala (p < 0.001) than those with pRBD; atrophy of the hippocampus (p = 0.005) and amygdala (p = 0.02) were associated with greater phospho-tau burdens in these regions.
Conclusion:
Presence of pRBD is associated with a higher likelihood of DLB and less severe Alzheimer-related pathology in the medial temporal lobes, whereas absence of pRBD is characterized by Alzheimer-like atrophy patterns on MRI and increased phospho-tau burden.
doi:10.1212/01.wnl.0000435299.57153.f0
PMCID: PMC3812105  PMID: 24107861
2.  Midbrain atrophy is not a biomarker of PSP pathology 
Background
Midbrain atrophy is a characteristic feature of progressive supranuclear palsy (PSP), although it is unclear whether it is associated with the PSP syndrome (PSPS) or PSP pathology. We aimed to determine whether midbrain atrophy is a useful biomarker of PSP pathology, or whether it is only associated with typical PSPS.
Methods
We identified all autopsy-confirmed subjects with the PSP clinical phenotype (i.e. PSPS) or PSP pathology and a volumetric MRI. Of 24 subjects with PSP pathology, 11 had a clinical diagnosis of PSPS (PSP-PSPS), and 13 had a non-PSPS clinical diagnosis (PSP-other). Three subjects had PSPS and corticobasal degeneration pathology (CBD-PSPS). Healthy control and disease control groups (i.e. a group without PSPS or PSP pathology) and a group with CBD pathology and corticobasal syndrome (CBD-CBS) were selected. Midbrain area was measured in all subjects.
Results
Midbrain area was reduced in each group with clinical PSPS (with and without PSP pathology). The group with PSP pathology and non-PSPS clinical syndromes did not show reduced midbrain area. Midbrain area was smaller in the subjects with PSPS compared to those without PSPS (p<0.0001), with an area under the receiver-operator-curve of 0.99 (0.88,0.99). A midbrain area cut-point of 92 mm2 provided optimum sensitivity (93%) and specificity (89%) for differentiation.
Conclusion
Midbrain atrophy is associated with the clinical presentation of PSPS, but not with the pathological diagnosis of PSP in the absence of the PSPS clinical syndrome. This finding has important implications for the utility of midbrain measurements as diagnostic biomarkers for PSP pathology.
doi:10.1111/ene.12212
PMCID: PMC3773014  PMID: 23746093
Progressive supranuclear palsy; tau; neuropathology; MRI; midbrain
3.  MRI and MRS predictors of mild cognitive impairment in a population-based sample 
Neurology  2013;81(2):126-133.
Objective:
To investigate MRI and proton magnetic resonance spectroscopy (MRS) predictors of mild cognitive impairment (MCI) in cognitively normal older adults.
Methods:
Subjects were cognitively normal older adults (n = 1,156) who participated in the population-based Mayo Clinic Study of Aging MRI/MRS study from August 2005 to December 2010 and had at least one annual clinical follow-up. Single-voxel MRS was performed from the posterior cingulate gyri, and hippocampal volumes and white matter hyperintensity volumes were quantified using automated methods. Brain infarcts were assessed on MRI. Cox proportional hazards regression, with age as the time scale, was used to assess the effect of MRI and MRS markers on the risk of progression from cognitively normal to MCI. Linear mixed-effects models were used to assess the effect of MRI and MRS markers on cognitive decline.
Results:
After a median follow-up of 2.8 years, 214 participants had progressed to MCI or dementia (estimated incidence rate = 6.1% per year; 95% confidence interval = 5.3%–7.0%). In univariable modeling, hippocampal volume, white matter hyperintensity volume, and N-acetylaspartate/myo-inositol were significant predictors of MCI in cognitively normal older adults. In multivariable modeling, only decreased hippocampal volume and N-acetylaspartate/myo-inositol were independent predictors of MCI. These MRI/MRS predictors of MCI as well as infarcts were associated with cognitive decline (p < 0.05).
Conclusion:
Quantitative MRI and MRS markers predict progression to MCI and cognitive decline in cognitively normal older adults. MRS may contribute to the assessment of preclinical dementia pathologies by capturing neurodegenerative changes that are not detected by hippocampal volumetry.
doi:10.1212/WNL.0b013e31829a3329
PMCID: PMC3770173  PMID: 23761624
4.  Brain Injury Biomarkers Are Not Dependent on β-amyloid in Normal Elderly 
Annals of neurology  2013;73(4):472-480.
Background
The new criteria for preclinical Alzheimer’s Disease (AD) proposed 3 stages: abnormal levels of β-amyloid (stage 1); stage 1 plus evidence of brain injury (stage 2); and stage 2 plus subtle cognitive changes (stage 3). However, a large group of subjects with normal β-amyloid biomarkers have evidence of brain injury; we labeled them as “suspected non-Alzheimer pathway” (sNAP) group. The characteristics of the sNAP group are poorly understood.
Methods
Using the preclinical AD classification, 430 cognitively normal subjects from the Mayo Clinic Study of Aging who underwent brain MR, 18fluorodeoxyglucose (FDG) and Pittsburgh compound B (PiB) positron emission tomography (PET) were evaluated with FDG PET regional volumetrics, MR regional brain volumetrics, white matter hyperintensity (WMH) volume and number of infarcts. We examined cross-sectional associations across AD preclinical stages, those with all biomarkers normal, and the sNAP group.
Results
The sNAP group had a lower proportion (14%) with APOE ε4 genotype than the preclinical AD stages 2 + 3. The sNAP group did not show any group differences compared to stages 2 + 3 of the preclinical AD group on measures of FDG PET regional hypometabolism, MR regional brain volume loss, cerebrovascular imaging lesions, vascular risk factors, imaging changes associated with α-synucleinopathy or physical findings of parkinsonism.
Conclusions
Cognitively normal persons with brain injury biomarker abnormalities, with or without abnormal levels of β-amyloid, were indistinguishable on a variety of imaging markers, clinical features and risk factors. The initial appearance of brain injury biomarkers that occurs in cognitively normal persons with preclinical AD may not depend on β-amyloidosis.
doi:10.1002/ana.23816
PMCID: PMC3660408  PMID: 23424032
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
5.  Brain β-amyloid load approaches a plateau 
Neurology  2013;80(10):890-896.
Objective:
To model the temporal trajectory of β-amyloid accumulation using serial amyloid PET imaging.
Methods:
Participants, aged 70–92 years, were enrolled in either the Mayo Clinic Study of Aging (n = 246) or the Mayo Alzheimer's Disease Research Center (n = 14). All underwent 2 or more serial amyloid PET examinations. There were 205 participants classified as cognitively normal and 55 as cognitively impaired (47 mild cognitive impairment and 8 Alzheimer dementia). We measured baseline amyloid PET-relative standardized uptake values (SUVR) and, for each participant, estimated a slope representing their annual amyloid accumulation rate. We then fit regression models to predict the rate of amyloid accumulation given baseline amyloid SUVR, and evaluated age, sex, clinical group, and APOE as covariates. Finally, we integrated the amyloid accumulation rate vs baseline amyloid PET SUVR association to an amyloid PET SUVR vs time association.
Results:
Rates of amyloid accumulation were low at low baseline SUVR. Rates increased to a maximum at baseline SUVR around 2.0, above which rates declined—reaching zero at baseline SUVR above 2.7. The rate of amyloid accumulation as a function of baseline SUVR had an inverted U shape. Integration produced a sigmoid curve relating amyloid PET SUVR to time. The average estimated time required to travel from an SUVR of 1.5–2.5 is approximately 15 years.
Conclusion:
This roughly 15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.
doi:10.1212/WNL.0b013e3182840bbe
PMCID: PMC3653215  PMID: 23446680
6.  Selective Worsening of Brain Injury Biomarker Abnormalities in Cognitively Normal Elderly with β-amyloidosis 
JAMA neurology  2013;70(8):10.1001/jamaneurol.2013.182.
Importance
The appearance of β-amyloidosis and brain injury biomarkers in cognitively normal (CN) persons is thought to define risk for the future development of cognitive impairment due to Alzheimer’s disease (AD), but their interaction is poorly understood.
Objective
To test the hypothesis that the joint presence of β-amyloidosis and brain injury biomarkers would lead to more rapid neurodegeneration.
Design
Longitudinal Cohort Study
Setting
Population-based Mayo Clinic Study of Aging.
Participants
191 CN persons (median age 77, range 71–93) in the Mayo Clinic Study of Aging who underwent MR, FDG PET and PiB PET imaging at least twice 15 months apart. Subjects were grouped according to the recommendations of the NIA-AA Preclinical AD criteria, based on the presence of β-amyloidosis, defined as a PiB PET SUVr >1.5, alone (Stage 1) or with brain injury (stage 2+3), defined as hippocampal atrophy or FDG hypometabolism. We also studied a group of MCI (n=17) and dementia (n=9) patients from the Mayo Clinic Study of Aging or the Mayo Alzheimer Center with similar follow-up times who had had comparable imaging and who all had PiB PET SUVr >1.5.
Main Outcome Measures
Rate of change of cortical volume on volumetric MR scans and rate of change of glucose metabolism on FDG PET scans.
Results
There were 25 CN subjects with both high PiB retention and low hippocampal volume or FDG hypometabolism at baseline (Preclinical AD stages 2+3). On follow-up scans, the Preclinical AD stages 2+3 subjects had greater loss of medial temporal lobe volume and greater glucose hypometabolism in the medial temporal lobe compared to other CN groups. The changes were similar to the cognitively impaired participants. Extra-temporal regions did not show similar changes.
Conclusions
Higher rates of medial temporal neurodegeneration occurred in CN individuals who, on their initial scans, had abnormal levels of both β-amyloid and brain injury biomarkers.
doi:10.1001/jamaneurol.2013.182
PMCID: PMC3884555  PMID: 23797806
Alzheimer’s disease; PET imaging; MR imaging; Epidemiology
7.  Effect of Lifestyle Activities on AD Biomarkers and Cognition 
Annals of neurology  2012;72(5):730-738.
Objectives
To investigate the effect of intellectual and physical activity on biomarkers of Alzheimer’s disease (AD) pathophysiology and cognition in a non-demented elderly population. The biomarkers evaluated were brain Aβ-amyloid load via PIB-PET, neuronal dysfunction via FDG-PET and neurodegeneration via Structural-MRI.
Methods
We studied 515 non-demented (428 cognitively normal and 87 MCI) participants in the population based Mayo Clinic Study of Aging who completed a 3T MRI, PET scans, APOE genotype, had lifestyle activity measures and cognition data available. The imaging measures computed were global PiB-PET uptake; global FDG-PET and MRI based hippocampal volume. We consolidated activity variables into lifetime intellectual, current intellectual and current physical activities. We used a global cognitive Z-score as a measure of cognition. We applied two independent methods – partial correlation analysis adjusted for age and gender and path analysis using structural equations to evaluate the associations between lifestyle activities, imaging biomarkers and global cognition.
Results
None of the lifestyle variables correlated with the biomarkers and the path associations between lifestyle variables and biomarkers were not significant (p>0.05). On the other hand, all the biomarkers were correlated with global cognitive Z-score (p<0.05) and the path associations between (lifetime and current) intellectual activities and global Z-score were significant (p<0.01).
Interpretation
Intellectual and physical activity lifestyle factors were not associated with AD biomarkers but intellectual lifestyle factors explained variability in the cognitive performance in this non-demented population. This study provides evidence that lifestyle activities may delay the onset of dementia but do not significantly influence the expression of AD pathophysiology.
doi:10.1002/ana.23665
PMCID: PMC3539211  PMID: 23280791
Alzheimer’s disease; Imaging biomarkers; Lifestyle Activities
8.  Shapes of the Trajectories of Five Major Biomarkers of Alzheimer’s Disease 
Archives of neurology  2012;69(7):856-867.
Objective
To characterize the shape of the trajectories of Alzheimer’s Disease (AD) biomarkers as a function of MMSE.
Design
Longitudinal registries from the Mayo Clinic and the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Patients
Two different samples (n=343 and n=598) were created that spanned the cognitive spectrum from normal to AD dementia. Subgroup analyses were performed in members of both cohorts (n=243 and n=328) who were amyloid positive at baseline.
Main Outcome Measures
The shape of biomarker trajectories as a function of MMSE, adjusted for age, was modeled and described as baseline (cross-sectional) and within-subject longitudinal effects. Biomarkers evaluated were cerebro spinal fluid (CSF) Aβ42 and tau; amyloid and fluoro deoxyglucose position emission tomography (PET) imaging, and structural magnetic resonance imaging (MRI).
Results
Baseline biomarker values generally worsened (i.e., non-zero slope) with lower baseline MMSE. Baseline hippocampal volume, amyloid PET and FDG PET values plateaued (i.e., non-linear slope) with lower MMSE in one or more analyses. Longitudinally, within-subject rates of biomarker change were associated with worsening MMSE. Non-constant within-subject rates (deceleration) of biomarker change were found in only one model.
Conclusions
Biomarker trajectory shapes by MMSE were complex and were affected by interactions with age and APOE status. Non-linearity was found in several baseline effects models. Non-constant within-subject rates of biomarker change were found in only one model, likely due to limited within-subject longitudinal follow up. Creating reliable models that describe the full trajectories of AD biomarkers will require significant additional longitudinal data in individual participants.
doi:10.1001/archneurol.2011.3405
PMCID: PMC3595157  PMID: 22409939
Alzheimer’s disease biomarkers; Magnetic Resonance Imaging; cerebro spinal fluid; amyloid PET imaging; FDG PET imaging
9.  An Operational Approach to NIA-AA Criteria for Preclinical Alzheimer’s Disease 
Annals of neurology  2012;71(6):765-775.
Objective
A workgroup commissioned by the Alzheimer’s Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer’s disease (AD). We performed a preliminary assessment of these guidelines.
Methods
We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cut-points. A group of 450 cognitively normal (CN) subjects from a population based sample was used to develop cognitive cut-points and to assess population frequencies of the different preclinical AD stages using different cut-point criteria.
Results
The new criteria subdivide the preclinical phase of AD into stages 1–3. To classify our CN subjects, two additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected Non-AD Pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cut-points corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0; 16% stage 1; 12 % stage 2; 3% stage 3; and 23% SNAP.
Interpretation
This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving just 3% unclassified. Future longitudinal validation of the criteria will be important.
doi:10.1002/ana.22628
PMCID: PMC3586223  PMID: 22488240
10.  Does amyloid deposition produce a specific atrophic signature in cognitively normal subjects?☆ 
NeuroImage : Clinical  2013;2:249-257.
The objective of our study was to evaluate whether cognitively normal (CN) elderly participants showing elevated cortical beta-amyloid (Aβ) deposition have a consistent neuroanatomical signature of brain atrophy that may characterize preclinical Alzheimer's disease (AD). 115 CN participants who were Aβ-positive (CN +) by amyloid PET imaging; 115 CN participants who were Aβ-negative (CN −); and 88 Aβ-positive mild cognitive impairment or AD participants (MCI/AD +) were identified. Cortical thickness (FreeSurfer) and gray matter volume (SPM5) were measured for 28 regions-of-interest (ROIs) across the brain and compared across groups. ROIs that best discriminated CN − from CN + differed for FreeSurfer cortical thickness and SPM5 gray matter volume. Group-wise discrimination was poor with a high degree of uncertainty in terms of the rank ordering of ROIs. In contrast, both techniques showed strong and consistent findings comparing MCI/AD + to both CN − and CN + groups, with entorhinal cortex, middle and inferior temporal lobe, inferior parietal lobe, and hippocampus providing the best discrimination for both techniques. Concordance across techniques was higher for the CN − and CN + versus MCI/AD + comparisons, compared to the CN − versus CN + comparison. The weak and inconsistent nature of the findings across technique in this study cast doubt on the existence of a reliable neuroanatomical signature of preclinical AD in elderly PiB-positive CN participants.
Highlights
► We measured atrophy in cognitively normal subjects with amyloid deposition (CN +). ► Findings in CN + subjects were weak and disconcordant across Freesurfer and SPM5. ► Concordance across techniques was higher when assessing Alzheimer disease subjects. ► Evidence for a neuroanatomical signature of preclinical AD in CN + subjects is weak.
doi:10.1016/j.nicl.2013.01.006
PMCID: PMC3778266  PMID: 24179779
Amyloid; Preclinical; Alzheimer's disease; Freesurfer; Voxel-based morphometry; Cognitively normal
11.  Non-Stationarity in the “Resting Brain’s” Modular Architecture 
PLoS ONE  2012;7(6):e39731.
Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain’s modular organization and assign each region to a “meta-modular” group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer’s dementia and 56 cognitively normal elderly subjects matched 1∶2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer’s disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer’s dementia.
doi:10.1371/journal.pone.0039731
PMCID: PMC3386248  PMID: 22761880
12.  Antemortem Differential Diagnosis of Dementia Pathology using Structural MRI: Differential-STAND 
NeuroImage  2010;55(2):522-531.
The common neurodegenerative pathologies underlying dementia are Alzheimer’s disease (AD), Lewy body disease (LBD) and Frontotemporal lobar degeneration (FTLD). Our aim was to identify patterns of atrophy unique to each of these diseases using antemortem structural-MRI scans of pathologically-confirmed dementia cases and build an MRI-based differential diagnosis system. Our approach of creating atrophy maps using structural-MRI and applying them for classification of new incoming patients is labeled Differential-STAND (Differential-diagnosis based on STructural Abnormality in NeuroDegeneration). Pathologically-confirmed subjects with a single dementing pathologic diagnosis who had an MRI at the time of clinical diagnosis of dementia were identified: 48 AD, 20 LBD, 47 FTLD-TDP (pathology-confirmed FTLD with TDP-43). Gray matter density in 91 regions-of-interest was measured in each subject and adjusted for head-size and age using a database of 120 cognitively normal elderly. The atrophy patterns in each dementia type when compared to pathologically-confirmed controls mirrored known disease-specific anatomic patterns: AD-temporoparietal association cortices and medial temporal lobe; FTLD-TDP-frontal and temporal lobes and LBD-bilateral amygdalae, dorsal midbrain and inferior temporal lobes. Differential-STAND based classification of each case was done based on a mixture model generated using bisecting k-means clustering of the information from the MRI scans. Leave-one-out classification showed reasonable performance compared to the autopsy gold-standard and clinical diagnosis: AD (sensitivity:90.7%; specificity:84 %), LBD (sensitivity:78.6%; specificity:98.8%) and FTLD-TDP (sensitivity:84.4%; specificity:93.8%). The proposed approach establishes a direct a priori relationship between specific topographic patterns on MRI and “gold standard” of pathology which can then be used to predict underlying dementia pathology in new incoming patients.
doi:10.1016/j.neuroimage.2010.12.073
PMCID: PMC3039279  PMID: 21195775
MRI; Alzheimer’s disease; Lewy body disease; Frontotemporal lobar degeneration
13.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics 
Brain  2012;135(3):794-806.
A major recent discovery was the identification of an expansion of a non-coding GGGGCC hexanucleotide repeat in the C9ORF72 gene in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Mutations in two other genes are known to account for familial frontotemporal dementia: microtubule-associated protein tau and progranulin. Although imaging features have been previously reported in subjects with mutations in tau and progranulin, no imaging features have been published in C9ORF72. Furthermore, it remains unknown whether there are differences in atrophy patterns across these mutations, and whether regional differences could help differentiate C9ORF72 from the other two mutations at the single-subject level. We aimed to determine the regional pattern of brain atrophy associated with the C9ORF72 gene mutation, and to determine which regions best differentiate C9ORF72 from subjects with mutations in tau and progranulin, and from sporadic frontotemporal dementia. A total of 76 subjects, including 56 with a clinical diagnosis of behavioural variant frontotemporal dementia and a mutation in one of these genes (19 with C9ORF72 mutations, 25 with tau mutations and 12 with progranulin mutations) and 20 sporadic subjects with behavioural variant frontotemporal dementia (including 50% with amyotrophic lateral sclerosis), with magnetic resonance imaging were included in this study. Voxel-based morphometry was used to assess and compare patterns of grey matter atrophy. Atlas-based parcellation was performed utilizing the automated anatomical labelling atlas and Statistical Parametric Mapping software to compute volumes of 37 regions of interest. Hemispheric asymmetry was calculated. Penalized multinomial logistic regression was utilized to create a prediction model to discriminate among groups using regional volumes and asymmetry score. Principal component analysis assessed for variance within groups. C9ORF72 was associated with symmetric atrophy predominantly involving dorsolateral, medial and orbitofrontal lobes, with additional loss in anterior temporal lobes, parietal lobes, occipital lobes and cerebellum. In contrast, striking anteromedial temporal atrophy was associated with tau mutations and temporoparietal atrophy was associated with progranulin mutations. The sporadic group was associated with frontal and anterior temporal atrophy. A conservative penalized multinomial logistic regression model identified 14 variables that could accurately classify subjects, including frontal, temporal, parietal, occipital and cerebellum volume. The principal component analysis revealed similar degrees of heterogeneity within all disease groups. Patterns of atrophy therefore differed across subjects with C9ORF72, tau and progranulin mutations and sporadic frontotemporal dementia. Our analysis suggested that imaging has the potential to be useful to help differentiate C9ORF72 from these other groups at the single-subject level.
doi:10.1093/brain/aws001
PMCID: PMC3286334  PMID: 22366795
frontotemporal dementia; magnetic resonance imaging; C9ORF72; tau; progranulin
14.  Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study 
Brain  2009;132(11):2932-2946.
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
doi:10.1093/brain/awp232
PMCID: PMC2768663  PMID: 19762452
behavioural variant frontotemporal dementia; atrophy; cluster analysis; voxel-based morphometry
15.  Atrophy Rates Accelerate in Amnestic Mild Cognitive Impairment 
Neurology  2007;70(19 Pt 2):1740-1752.
Background
We tested if rates of brain atrophy accelerate in individuals with amnestic mild cognitive impairment (aMCI) as they progress to typical late onset Alzheimer's Disease (AD). We included comparisons to aMCI subjects who did not progress (labeled aMCI-S) and also to cognitively normal elderly subjects (CN).
Methods
We studied 46 aMCI subjects who progressed to AD (labeled aMCI-P), 46 CN, and 23 aMCI-S. All subjects must have had three or more serial MRI scans. Rates of brain shrinkage and ventricular expansion were measured across all available serial MRI scans in each subject. Change in volumes relative to the point at which subjects progressed to a clinical diagnosis of AD (the index date) was modeled in aMCI-P. Change in volumes relative to age was modeled in all three clinical groups.
Results
In aMCI-P the change in pre to post index rate (i.e. acceleration) of ventricular expansion was 1.7 cm3/yr, and acceleration in brain shrinkage was 5.3 cm3/yr. Brain volume declined and ventricular volume increased in all three groups with age. Volume changes decelerated with increasing age in aMCI-P, and to a lesser extent aMCI-S, but were linear in the matched CN. Among all aMCI subjects, rates of atrophy were greater in apolipoprotein E ε4 carriers than non-carriers.
Conclusions
Rates of atrophy accelerate as individuals progress from aMCI to typical late onset AD. Rates of atrophy are greater in younger than older aMCI-P and aMCI-S subjects. We did not find that atrophy rates varied with age in 70 – 90 year old CN subjects.
doi:10.1212/01.wnl.0000281688.77598.35
PMCID: PMC2734477  PMID: 18032747
16.  Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease 
Brain  2009;132(5):1355-1365.
The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial 11C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources—ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm3 by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm3/year) <  amnestic mild cognitive impairment (2.5 cm3/year) <  Alzheimer's disease (7.7 cm3/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = −0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =−0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =−0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration.
doi:10.1093/brain/awp062
PMCID: PMC2677798  PMID: 19339253
Alzheimer's disease; amyloid imaging; magnetic resonance imaging, longitudinal imaging; mild cognitive impairment; Pittsburgh compound B
17.  Alzheimer's Disease Diagnosis in Individual Subjects using Structural MR Images: Validation Studies 
NeuroImage  2007;39(3):1186-1197.
OBJECTIVE
To develop and validate a tool for Alzheimer's disease (AD) diagnosis in individual subjects using support vector machine (SVM) based classification of structural MR (sMR) images.
BACKGROUND
Libraries of sMR scans of clinically well characterized subjects can be harnessed for the purpose of diagnosing new incoming subjects.
METHODS
190 patients with probable AD were age- and gender-matched with 190 cognitively normal (CN) subjects. Three different classification models were implemented: Model I uses tissue densities obtained from sMR scans to give STructural Abnormality iNDex (STAND)-score; and Models II and III use tissue densities as well as covariates (demographics and Apolipoprotein E genotype) to give adjusted-STAND (aSTAND)-score. Data from 140 AD and 140 CN were used for training. The SVM parameter optimization and training was done by four-fold cross validation. The remaining independent sample of 50 AD and 50 CN were used to obtain a minimally biased estimate of the generalization error of the algorithm.
RESULTS
The CV accuracy of Model II and Model III aSTAND-scores was 88.5% and 89.3% respectively and the developed models generalized well on the independent test datasets. Anatomic patterns best differentiating the groups were consistent with the known distribution of neurofibrillary AD pathology.
CONCLUSIONS
This paper presents preliminary evidence that application of SVM-based classification of an individual sMR scan relative to a library of scans can provide useful information in individual subjects for diagnosis of AD. Including demographic and genetic information in the classification algorithm slightly improves diagnostic accuracy.
doi:10.1016/j.neuroimage.2007.09.073
PMCID: PMC2390889  PMID: 18054253
support vector machines; classification; diagnosis; Alzheimer's

Results 1-17 (17)