PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery 
Journal of Bacteriology  2014;196(13):2355-2366.
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
doi:10.1128/JB.01493-14
PMCID: PMC4054167  PMID: 24748612
2.  Deficiency of BrpB causes major defects in cell division, stress responses and biofilm formation by Streptococcus mutans 
Microbiology  2014;160(Pt 1):67-78.
Streptococcus mutans, the primary aetiological agent of dental caries, possesses an YjeE-like protein that is encoded by locus SMU.409, herein designated brpB. In this study, a BrpB-deficient mutant, JB409, and a double mutant deficient of BrpB and BrpA (a paralogue of the LytR–CpsA–Psr family of cell wall-associated proteins), JB819, were constructed and characterized using function assays and microscopy analysis. Both JB409 and JB819 displayed extended lag phases and drastically slowed growth rates during growth in brain heart infusion medium as compared to the wild-type, UA159. Relative to UA159, JB409 and JB819 were more than 60- and 10-fold more susceptible to acid killing at pH 2.8, and more than 1 and 2 logs more susceptible to hydrogen peroxide, respectively. Complementation of the deficient mutants with a wild-type copy of the respective gene(s) partly restored the acid and oxidative stress responses to a level similar to the wild-type. As compared to UA159, biofilm formation by JB409 and JB819 was drastically reduced (P<0.001), especially during growth in medium containing sucrose. Under a scanning electron microscope, JB409 had significantly more giant cells with an elongated, rod-like morphology, and JB819 formed marble-like super cells with apparent defects in cell division. As revealed by transmission electron microscopy analysis, BrpB deficiency in both JB409 and JB819 resulted in the development of low electron density patches and formation of a loose nucleoid structure. Taken together, these results suggest that BrpB likely functions together with BrpA in regulating cell envelope biogenesis/homeostasis in Strep. mutans. Further studies are under way to elucidate the mechanism that underlies the BrpA- and BrpB-mediated regulation.
doi:10.1099/mic.0.072884-0
PMCID: PMC3917225  PMID: 24190982
3.  Psr is involved in regulation of glucan production, and double deficiency of BrpA and Psr is lethal in Streptococcus mutans 
Microbiology  2013;159(Pt 3):493-506.
Streptococcus mutans, the primary causative agent of dental caries, contains two paralogues of the LytR-CpsA-Psr family proteins encoded by brpA and psr, respectively. Previous studies have shown that BrpA plays an important role in cell envelope biogenesis/homeostasis and affects stress responses and biofilm formation by Strep. mutans, traits critical to cariogenicity of this bacterium. In this study, a Psr-deficient mutant, TW251, was constructed. Characterization of TW251 showed that deficiency of Psr did not have any major impact on growth rate. However, when subjected to acid killing at pH 2.8, the survival rate of TW251 was decreased dramatically compared with the parent strain UA159. In addition, TW251 also displayed major defects in biofilm formation, especially during growth with sucrose. When compared to UA159, the biofilms of TW251 were mainly planar and devoid of extracellular glucans. Real-time-PCR and Western blot analyses revealed that deficiency of Psr significantly decreased the expression of glucosyltransferase C, a protein known to play a major role in biofilm formation by Strep. mutans. Transmission electron microscopy analysis showed that deficiency of BrpA caused alterations in cell envelope and cell division, and the most significant defects were observed in TW314, a Psr-deficient and BrpA-down mutant. No such effects were observed with Psr mutant TW251 under similar conditions. These results suggest that while there are similarities in functions between BrpA and Psr, distinctive differences also exist between these two paralogues. Like Bacillus subtilis but different from Staphylococcus aureus, a functional BrpA or Psr is required for viability in Strep. mutans.
doi:10.1099/mic.0.063032-0
PMCID: PMC3709821  PMID: 23288544
4.  The Redox-Sensing Regulator Rex Modulates Central Carbon Metabolism, Stress Tolerance Response and Biofilm Formation by Streptococcus mutans 
PLoS ONE  2012;7(9):e44766.
The Rex repressor has been implicated in regulation of central carbon and energy metabolism in Gram-positive bacteria. We have previously shown that Streptococcus mutans, the primary causative agent of dental caries, alters its transcriptome upon Rex-deficiency and renders S. mutans to have increased susceptibility to oxidative stress, aberrations in glucan production, and poor biofilm formation. In this study, we showed that rex in S. mutans is co-transcribed as an operon with downstream guaA, encoding a putative glutamine amidotransferase. Electrophoretic mobility shift assays showed that recombinant Rex bound promoters of target genes avidly and specifically, including those down-regulated in response to Rex-deficiency, and that the ability of recombinant Rex to bind to selected promoters was modulated by NADH and NAD+. Results suggest that Rex in S. mutans can function as an activator in response to intracellular NADH/NAD+ level, although the exact binding site for activator Rex remains unclear. Consistent with a role in oxidative stress tolerance, hydrogen peroxide challenge assays showed that the Rex-deficient mutant, TW239, and the Rex/GuaA double mutant, JB314, were more susceptible to hydrogen peroxide killing than the wildtype, UA159. Relative to UA159, JB314 displayed major defects in biofilm formation, with a decrease of more than 50-fold in biomass after 48-hours. Collectively, these results further suggest that Rex in S. mutans regulates fermentation pathways, oxidative stress tolerance, and biofilm formation in response to intracellular NADH/NAD+ level. Current effort is being directed to further investigation of the role of GuaA in S. mutans cellular physiology.
doi:10.1371/journal.pone.0044766
PMCID: PMC3441419  PMID: 23028612
5.  Transcriptional Repressor Rex Is Involved in Regulation of Oxidative Stress Response and Biofilm Formation by Streptococcus mutans 
FEMS microbiology letters  2011;320(2):110-117.
The transcriptional repressor Rex has been implicated in regulation of energy metabolism and fermentative growth in response to redox potential. Streptococcus mutans, the primary causative agent of human dental caries, possesses a gene that encodes a protein with high similarity to members of the Rex family of proteins. In this study, we showed that Rex-deficiency compromised the ability of S. mutans to cope with oxidative stress and to form biofilms. The Rex-deficient mutant also accumulated less biofilm after 3-days than the wild-type strain, especially when grown in sucrose-containing medium, but produced more extracellular glucans than the parental strain. Rex-deficiency caused substantial alterations in gene transcription, including those involved in heterofermentative metabolism, NAD+ regeneration and oxidative stress. Among the up-regulated genes was gtfC, which encodes glucosyltransferase C, an enzyme primarily responsible for synthesis of water-insoluble glucans. These results reveal that Rex plays an important role in oxidative stress responses and biofilm formation by S. mutans.
doi:10.1111/j.1574-6968.2011.02293.x
PMCID: PMC3115380  PMID: 21521360
Redox sensing; oxidative stress; biofilm formation; Streptococcus mutans
6.  Iron Binding Activity of Human Iron-Sulfur Cluster Assembly Protein hIscA-1 
The Biochemical journal  2010;428(1):125-131.
SYNOPSIS
A human homologue of the iron-sulfur cluster assembly protein IscA (hIscA1) has been cloned and expressed in Escherichia coli cells. The UV-visible absorption and EPR (electron paramagnetic resonance) measurements reveal that hIscA1 purified from E. coli cells contains a mononuclear iron center and that the iron binding in hIscA1 expressed in E. coli cells can be further modulated by the iron content in the cell growth medium. Additional studies show that purified hIscA1 binds iron with an iron association constant of approx. 2.0 × 1019 M−1, and that the iron-bound hIscA1 is able to provide the iron for the iron-sulfur cluster assembly in a proposed scaffold protein IscU of E. coli in vitro. The complementation experiments indicate that hIscA1 can partially substitute for IscA in restoring the cell growth of E. coli in the M9 minimal medium under aerobic conditions. The results suggest that human IscA1, like E. coli IscA, is an iron binding protein that may act as an iron chaperone for biogenesis of iron-sulfur clusters.
doi:10.1042/BJ20100122
PMCID: PMC2878720  PMID: 20302570
Iron-sulfur cluster biogenesis; human IscA homologue; intracellular iron content
7.  IscA/SufA Paralogs Are Required for the [4Fe-4S] Cluster Assembly in Enzymes of Multiple Physiological Pathways in Escherichia coli under Aerobic Growth Conditions 
The Biochemical journal  2009;420(3):463-472.
Synopsis
IscA/SufA paralogs are the members of the iron-sulfur cluster assembly machinery in Escherichia coli. While deletion of either IscA or SufA has only a mild effect on cell growth, deletion of both IscA and SufA results in a null-growth phenotype in minimal medium under aerobic growth conditions. Here we report that cell growth of the iscA/sufA double mutant (E. coli strain in which both iscA and sufA had been in-frame-deleted) can be partially restored by supplementing with BCAAs (branched-chain amino acids) and thiamin. We further demonstrate that deletion of IscA/SufA paralogs blocks the [4Fe-4S] cluster assembly in IlvD (dihydroxyacid dehydratase) of the BCAA biosynthesis pathway in E. coli cells under aerobic conditions and that addition of the iron-bound IscA/SufA efficiently promotes the [4Fe-4S] cluster assembly in IlvD and restores the enzyme activity in vitro, suggesting that IscA/SufA may act as an iron donor for the [4Fe-4S] cluster assembly under aerobic conditions. Additional studies reveal that IscA/SufA are also required for the [4Fe-4S] cluster assembly in protein ThiC of the thiamin biosynthesis pathway, aconitase B of the citrate acid cycle, and endonuclease III of the DNA base excision repair pathway in E. coli under aerobic conditions. Nevertheless, deletion of IscA/SufA does not significantly affect the [2Fe-2S] cluster assembly in the redox transcription factor SoxR, ferredoxin, and the siderophore-iron reductase FhuF. The results suggest that the biogenesis of the [4Fe-4S] clusters and the [2Fe-2S] clusters may have distinct pathways and that IscA/SufA paralogs are essential for the [4Fe-4S] cluster assembly, but are dispensable for the [2Fe-2S] cluster assembly in E. coli under aerobic conditions.
doi:10.1042/BJ20090206
PMCID: PMC2776711  PMID: 19309314
aconitase; branched-chain amino acids; dihydroxyacid dehydratase; iron-sulfur clusters; IscA/SufA paralogs; thiamin
8.  Escherichia coli FtnA Acts as an Iron Buffer for Re-assembly of Iron-Sulfur Clusters in Response to Hydrogen Peroxide Stress 
Iron-sulfur clusters are one of the most ubiquitous redox centers in biology. Ironically, iron-sulfur clusters are highly sensitive to reactive oxygen species. Disruption of iron-sulfur clusters will not only change the activity of proteins that host iron-sulfur clusters, the iron released from the disrupted iron-sulfur clusters will further promote the production of deleterious hydroxyl free radicals via the Fenton reaction. Here, we report that ferritin A (FtnA), a major iron-storage protein in Escherichia coli, is able to scavenge the iron released from the disrupted iron-sulfur clusters and alleviates the production of hydroxyl free radicals. Furthermore, we find that the iron stored in ferritin A can be retrieved by an iron chaperon IscA for the re-assembly of the iron-sulfur cluster in a proposed scaffold IscU in the presence of the thioredoxin reductase system which emulates normal intracellular redox potential. The results suggest that E. coli ferritin A may act as an iron buffer to sequester the iron released from the disrupted iron-sulfur clusters under oxidative stress conditions and to facilitate the re-assembly of the disrupted iron-sulfur clusters under normal physiological conditions.
doi:10.1007/s10534-008-9154-7
PMCID: PMC2576483  PMID: 18618270
Ferritin A; hydroxyl free radicals; iron-sulfur clusters; IscA; IscU

Results 1-8 (8)