Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila 
Neuron  2013;79(1):54-68.
Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions.
PMCID: PMC3955580  PMID: 23849197
2.  Drosophila melanogaster females change mating behaviour and offspring production based on social context 
In Drosophila melanogaster, biological rhythms, aggression and mating are modulated by group size and composition. However, the fitness significance of this group effect is unknown. By varying the composition of groups of males and females, we show that social context affects reproductive behaviour and offspring genetic diversity. Firstly, females mating with males from the same strain in the presence of males from a different strain are infecund, analogous to the Bruce effect in rodents, suggesting a social context-dependent inbreeding avoidance mechanism. Secondly, females mate more frequently in groups composed of males from more than one strain; this mitigates last male sperm precedence and increases offspring genetic diversity. However, smell-impaired Orco mutant females do not increase mating frequency according to group composition; this indicates that social context-dependent changes in reproductive behaviour depend on female olfaction, rather than direct male–male interactions. Further, variation in mating frequency in wild-type strains depends on females and not males. The data show that group composition can affect variance in the reproductive success of its members, and that females play a central role in this process. Social environment can thus influence the evolutionary process.
PMCID: PMC3350680  PMID: 22298851
Drosophila melanogaster; social behaviour; reproduction; mate choice; sperm competition; Bruce effect
3.  Hierarchical chemosensory regulation of male-male social interactions in Drosophila 
Nature neuroscience  2011;14(6):757-762.
Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. Here we show that (Z)-7-tricosene (7-T), a male-enriched cuticular hydrocarbon (CH) previously shown to inhibit male-male courtship, is also essential for normal levels of aggression. The opposite influences of 7-T on aggression and courtship are independent, but both require the gustatory receptor Gr32a. Surprisingly, sensitivity to 7-T is required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but 7-T sensitivity is independent of cVA. 7-T and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male CHs is suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote and suppress aggression and courtship, respectively, and whose influences are dominant to olfactory pheromones that enhance these behaviors.
PMCID: PMC3102769  PMID: 21516101
4.  Correction: Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila 
PLoS Biology  2010;8(12):10.1371/annotation/1c19d040-9f9f-4b9f-b678-70f1fe387192.
PMCID: PMC2997046
5.  Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila 
PLoS Biology  2010;8(11):e1000541.
By genetically manipulating both pheromonal profiles and behavioral patterns, we find that Drosophila males showed a complete reversal in their patterns of aggression towards other males and females
Appropriate displays of aggression rely on the ability to recognize potential competitors. As in most species, Drosophila males fight with other males and do not attack females. In insects, sex recognition is strongly dependent on chemosensory communication, mediated by cuticular hydrocarbons acting as pheromones. While the roles of chemical and other sensory cues in stimulating male to female courtship have been well characterized in Drosophila, the signals that elicit aggression remain unclear. Here we show that when female pheromones or behavior are masculinized, males recognize females as competitors and switch from courtship to aggression. To masculinize female pheromones, a transgene carrying dsRNA for the sex determination factor transformer (traIR) was targeted to the pheromone producing cells, the oenocytes. Shortly after copulation males attacked these females, indicating that pheromonal cues can override other sensory cues. Surprisingly, masculinization of female behavior by targeting traIR to the nervous system in an otherwise normal female also was sufficient to trigger male aggression. Simultaneous masculinization of both pheromones and behavior induced a complete switch in the normal male response to a female. Control males now fought rather than copulated with these females. In a reciprocal experiment, feminization of the oenocytes and nervous system in males by expression of transformer (traF) elicited high levels of courtship and little or no aggression from control males. Finally, when confronted with flies devoid of pheromones, control males attacked male but not female opponents, suggesting that aggression is not a default behavior in the absence of pheromonal cues. Thus, our results show that masculinization of either pheromones or behavior in females is sufficient to trigger male-to-female aggression. Moreover, by manipulating both the pheromonal profile and the fighting patterns displayed by the opponent, male behavioral responses towards males and females can be completely reversed. Therefore, both pheromonal and behavioral cues are used by Drosophila males in recognizing a conspecific as a competitor.
Author Summary
As in other species, the fruit fly Drosophila melanogaster uses chemical signals in the form of pheromones to recognize the species and sex of another individual. Males typically fight with other males and do not attack females. While the roles of pheromonal and other sensory cues in stimulating courtship towards females have been extensively studied, the signals that elicit aggression towards other males remain unclear. In this work, we use genetic tools to show that masculinization of female pheromones is sufficient to trigger aggression from wild type males towards females. Surprisingly, males also attacked females that displayed male patterns of aggression, even if they show normal female pheromonal profiles, indicating that pheromones are not the only cues important for identifying another animal as an opponent. By simultaneously manipulating pheromones and behavioral patterns of opponents, we can completely switch the behavioral response of males towards females and males. These results demonstrate that not only pheromonal but also behavioral cues can serve as triggers of aggression, underlining the importance of behavioral feedback in the manifestation of social behaviors.
PMCID: PMC2990703  PMID: 21124886

Results 1-5 (5)