PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Linkage analysis of anti-CCP levels as dichotomized and quantitative traits using GAW15 single-nucleotide polymorphism scan of NARAC families 
BMC Proceedings  2007;1(Suppl 1):S107.
Rheumatoid arthritis is a clinically and genetically heterogeneous disease. Anti-cyclic citrullinated (anti-CCP) antibodies have a high specificity for rheumatoid arthritis and levels correlate with disease severity. The focus of this study was to examine whether analyzing anti-CCP levels could increase the power of linkage analysis by identifying a more homogeneous subset of rheumatoid arthritis patients. We also wanted to compare linkage signals when analyzing anti-CCP levels as dichotomized (CCP_binary), categorical (CCP_cat), and continuous traits, with and without transformation (log_CCP and CCP_cont). Illumina single-nucleotide polymorphism scans of the North American Rheumatoid Arthritis Consortium families were analyzed for four chromosomes (6, 7, 11, 22) using nonparametric linkage (NPL) (rheumatoid arthritis and CCP_binary), regress (CCP_cat and Log_CCP), and deviates (CCP_cont) analysis options as implemented in Merlin. Similar linkage results were obtained from analyses of rheumatoid arthritis, CCP_binary, and CCP_cont. The only exception was that we observed improved linkage signals and a narrower region for CCP_binary as compared to a clinical diagnosis of rheumatoid arthritis alone on chromosome 7, a region which previously showed variation in linkage results with rheumatoid arthritis according to anti-CCP levels. Analyses of CCP_cat and Log_CCP had little power to detect linkage. Our data suggested that linkage analyses of anti-CCP levels may facilitate identification of rheumatoid arthritis genes but quantitative analyses did not further improve power. Our study also highlighted that quantitative trait linkage results are highly sensitive to phenotype transformation and analytic approaches.
PMCID: PMC2367471  PMID: 18466447
2.  Identification of susceptibility loci for complex diseases in a case-control association study using the Genetic Analysis Workshop 14 dataset 
BMC Genetics  2005;6(Suppl 1):S102.
Although current methods in genetic epidemiology have been extremely successful in identifying genetic loci responsible for Mendelian traits, most common diseases do not follow simple Mendelian modes of inheritance. It is important to consider how our current methodologies function in the realm of complex diseases. The aim of this study was to determine the ability of conventional association methods to fine map a locus of interest. Six study populations were selected from 10 replicates (New York) from the Genetic Analysis Workshop 14 simulated dataset and analyzed for association between the disease trait and locus D2. Genotypes from 45 single-nucleotide polymorphisms in the telomeric region of chromosome 3 were analyzed by Pearson's chi-square tests for independence to test for association with the disease trait of interest. A significant association was detected within the region; however, it was found 3 cM from the documented location of the D2 disease locus. This result was most likely due to the method used for data simulation. In general, this study showed that conventional case-control association methods could detect disease loci responsible for the development of complex traits.
doi:10.1186/1471-2156-6-S1-S102
PMCID: PMC1866837  PMID: 16451558
3.  Linkage analysis of the GAW14 simulated dataset with microsatellite and single-nucleotide polymorphism markers in large pedigrees 
BMC Genetics  2005;6(Suppl 1):S14.
Recent studies have suggested that a high-density single nucleotide polymorphism (SNP) marker set could provide equivalent or even superior information compared with currently used microsatellite (STR) marker sets for gene mapping by linkage. The focus of this study was to compare results obtained from linkage analyses involving extended pedigrees with STR and single-nucleotide polymorphism (SNP) marker sets. We also wanted to compare the performance of current linkage programs in the presence of high marker density and extended pedigree structures. One replicate of the Genetic Analysis Workshop 14 (GAW14) simulated extended pedigrees (n = 50) from New York City was analyzed to identify the major gene D2. Four marker sets with varying information content and density on chromosome 3 (STR [7.5 cM]; SNP [3 cM, 1 cM, 0.3 cM]) were analyzed to detect two traits, the original affection status, and a redefined trait more closely correlated with D2. Multipoint parametric and nonparametric linkage analyses (NPL) were performed using programs GENEHUNTER, MERLIN, SIMWALK2, and S.A.G.E. SIBPAL. Our results suggested that the densest SNP map (0.3 cM) had the greatest power to detect linkage for the original trait (genetic heterogeneity), with the highest LOD score/NPL score and mapping precision. However, no significant improvement in linkage signals was observed with the densest SNP map compared with STR or SNP-1 cM maps for the redefined affection status (genetic homogeneity), possibly due to the extremely high information contents for all maps. Finally, our results suggested that each linkage program had limitations in handling the large, complex pedigrees as well as a high-density SNP marker set.
doi:10.1186/1471-2156-6-S1-S14
PMCID: PMC1866796  PMID: 16451599
4.  Genomic regions linked to alcohol consumption in the Framingham Heart Study 
BMC Genetics  2003;4(Suppl 1):S101.
Background
Pedigree, demographic, square-root transformed maximum alcohol (SRMAXAPD) and maximum cigarette (MAXCPD) consumption, and genome-wide scan data from the Framingham Heart Study (FHS) were used to investigate genetic factors that may affect alcohol and cigarette consumption in this population-based sample.
Results
A significant sister:sister correlation greater than spouse correlation was observed for MAXCPD only. Single-point sib-pair regression analysis provided nominal evidence for linkage of loci to both SRMAXAPD and MAXCPD consumption traits, with more significant evidence of linkage to SRMAXAPD than to MAXCPD. One genomic region, chr9q21.11, exhibits significant multi-point sib-pair regression to SRMAXAPD.
Conclusion
SRMAXAPD exhibits greater evidence for genetic linkage than does MAXCPD in the FHS sample. Four regions of the genome exhibiting nominal evidence for linkage to SRMAXAPD in the FHS sample correspond to regions of the genome previously identified as linked to alcoholism or related traits in the family data set ascertained on individuals affected with alcohol dependence known as COGA.
doi:10.1186/1471-2156-4-S1-S101
PMCID: PMC1866439  PMID: 14975169

Results 1-4 (4)