PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data 
Bioinformatics  2012;29(2):189-196.
Motivation: The Illumina Infinium 450 k DNA Methylation Beadchip is a prime candidate technology for Epigenome-Wide Association Studies (EWAS). However, a difficulty associated with these beadarrays is that probes come in two different designs, characterized by widely different DNA methylation distributions and dynamic range, which may bias downstream analyses. A key statistical issue is therefore how best to adjust for the two different probe designs.
Results: Here we propose a novel model-based intra-array normalization strategy for 450 k data, called BMIQ (Beta MIxture Quantile dilation), to adjust the beta-values of type2 design probes into a statistical distribution characteristic of type1 probes. The strategy involves application of a three-state beta-mixture model to assign probes to methylation states, subsequent transformation of probabilities into quantiles and finally a methylation-dependent dilation transformation to preserve the monotonicity and continuity of the data. We validate our method on cell-line data, fresh frozen and paraffin-embedded tumour tissue samples and demonstrate that BMIQ compares favourably with two competing methods. Specifically, we show that BMIQ improves the robustness of the normalization procedure, reduces the technical variation and bias of type2 probe values and successfully eliminates the type1 enrichment bias caused by the lower dynamic range of type2 probes. BMIQ will be useful as a preprocessing step for any study using the Illumina Infinium 450 k platform.
Availability: BMIQ is freely available from http://code.google.com/p/bmiq/.
Contact: a.teschendorff@ucl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online
doi:10.1093/bioinformatics/bts680
PMCID: PMC3546795  PMID: 23175756
2.  Comments on: Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed paraffin-embedded paired tumor and normal tissue 
BMC Research Notes  2012;5:631.
BMC Research Notes recently published a research article regarding the use of ligated DNA extracted from formalin-fixed paraffin embedded (FFPE) tissue on the Illumina Infinium methylation platform - “Interpretation of genome-wide infinium methylation data from ligated DNA in formalin-fixed, paraffin-embedded paired tumor and normal tissue” Jasmine et al. BMC Research Notes 2012, 5:117. This article repeatedly refers to our previous work and concludes that methylation data obtained from ligated FFPE extracted DNA should be used with great caution. In this Discussion we review the data analysis performed in Jasmine et al’s paper and suggest limitations which subsequently lead the authors to draw what we believe are incorrect conclusions. Moreover, we continue to analyse genome-wide methylation data from DNA extracted from FFPE tissue successfully on both the HumMeth27 and 450 K arrays.
doi:10.1186/1756-0500-5-631
PMCID: PMC3531275  PMID: 23148593
3.  Human-specific CpG “beacons” identify loci associated with human-specific traits and disease 
Epigenetics  2012;7(10):1188-1199.
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10−3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10−3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.
doi:10.4161/epi.22127
PMCID: PMC3469460  PMID: 22968434
epigenetics; epigenomics; CpG islands; gene regulation; evolution; human disease
4.  Resources for methylome analysis suitable for gene knockout studies of potential epigenome modifiers 
GigaScience  2012;1:3.
Background
Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.
Results
We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3 biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis pipeline for the identification of differentially methylated regions (DMRs). The observed increase of hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an association of TDG with low-methylated distal regulatory regions.
Conclusions
We demonstrate that MeDUSA is able to detect both large-scale changes between cells from different stages of differentiation and also small but significant changes between the methylomes of cells that only differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm TDG's function in the protection of regulatory regions from epigenetic silencing.
doi:10.1186/2047-217X-1-3
PMCID: PMC3617451  PMID: 23587164
Methylome; MeDIP-seq; Epigenetics; Epigenomics; DNA methylation; Computational pipeline; MeDUSA
5.  Plant and animal endemism in the eastern Andean slope: challenges to conservation 
BMC Ecology  2012;12:1.
Background
The Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism, perhaps the highest in the world, yet we know little about the geographic distributions of these species and ecosystems within country boundaries. To address this need, we have developed conservation data on endemic biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90; groups of vegetation communities resulting from the action of ecological processes, substrates, and/or environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347 endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioner's scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas.
Results
We found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the study area by species group. We found that many endemic species and ecological systems are lacking national-level protection; a third of endemic species have distributions completely outside of national protected areas. Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91 ecological systems are in serious need of protection (= < 2% of their ranges protected).
Conclusions
We identify for the first time, areas of high endemic species concentrations and high irreplaceability that have only been roughly indicated in the past at the continental scale. We conclude that new complementary protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation data.
doi:10.1186/1472-6785-12-1
PMCID: PMC3311091  PMID: 22284854
Andes-Amazon; conservation planning; ecological systems; endemic species richness; irreplaceability; Latin America

Results 1-5 (5)