PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project 
Immunogenetics  2008;60(1):1-18.
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine.
doi:10.1007/s00251-007-0262-2
PMCID: PMC2206249  PMID: 18193213
Major histocompatibility complex; Haplotype; Polymorphism; Retroelement; Genetic predisposition to disease; Population genetics
2.  Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History 
PLoS Genetics  2006;2(1):e9.
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II–related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR–DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.
Synopsis
A group of genes involved in the human immune system are contained within a surprisingly short section of Chromosome 6 that has long been recognised as the most important genomic region in relation to disease susceptibility. Discerning the actual genes playing a role in disease has proved difficult mainly because the region contains numerous genes and is also the most genetically variable in the genome. Within this jungle of variation, the research reported here has identified and characterised a discrete segment shared by two individuals that is virtually devoid of variation—a polymorphism desert. The conservation of this segment amongst a background of extreme variation suggests both an ancient origin and genetic exchange in early human history. These observations are important in evolutionary terms as they reveal a potential mechanism whereby certain genetic segments associated with favourable immune functions have spread across human populations. Within medical terms this may also explain contrasting disease risks in people from different ethnic backgrounds. Public access to these data will help researchers find specific variants conferring disease susceptibility or resistance and, as in this report, rule out regions for conveying specificity to certain diseases.
doi:10.1371/journal.pgen.0020009
PMCID: PMC1331980  PMID: 16440057
3.  Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History 
PLoS Genetics  2006;2(1):e9.
The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II–related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR–DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.
Synopsis
A group of genes involved in the human immune system are contained within a surprisingly short section of Chromosome 6 that has long been recognised as the most important genomic region in relation to disease susceptibility. Discerning the actual genes playing a role in disease has proved difficult mainly because the region contains numerous genes and is also the most genetically variable in the genome. Within this jungle of variation, the research reported here has identified and characterised a discrete segment shared by two individuals that is virtually devoid of variation—a polymorphism desert. The conservation of this segment amongst a background of extreme variation suggests both an ancient origin and genetic exchange in early human history. These observations are important in evolutionary terms as they reveal a potential mechanism whereby certain genetic segments associated with favourable immune functions have spread across human populations. Within medical terms this may also explain contrasting disease risks in people from different ethnic backgrounds. Public access to these data will help researchers find specific variants conferring disease susceptibility or resistance and, as in this report, rule out regions for conveying specificity to certain diseases.
doi:10.1371/journal.pgen.0020009
PMCID: PMC1331980  PMID: 16440057

Results 1-3 (3)