Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Targeting of Conserved Gag-Epitopes in Early HIV Infection Is Associated with Lower Plasma Viral Load and Slower CD4+ T Cell Depletion 
We aimed to investigate whether the character of the immunodominant HIV-Gag peptide (variable or conserved) targeted by CD8+ T cells in early HIV infection would influence the quality and quantity of T cell responses, and whether this would affect the rate of disease progression. Treatment-naive HIV-infected study subjects within the OPTIONS cohort at the University of California, San Francisco, were monitored from an estimated 44 days postinfection for up to 6 years. CD8+ T cells responses targeting HLA-matched HIV-Gag-epitopes were identified and characterized by multicolor flow cytometry. The autologous HIV gag sequences were obtained. We demonstrate that patients targeting a conserved HIV-Gag-epitope in early infection maintained their epitope-specific CD8+ T cell response throughout the study period. Patients targeting a variable epitope showed decreased immune responses over time, although there was no limitation of the functional profile, and they were likely to target additional variable epitopes. Maintained immune responses to conserved epitopes were associated with no or limited sequence evolution within the targeted epitope. Patients with immune responses targeting conserved epitopes had a significantly lower median viral load over time compared to patients with responses targeting a variable epitope (0.63 log10 difference). Furthermore, the rate of CD4+ T cell decline was slower for subjects targeting a conserved epitope (0.85% per month) compared to subjects targeting a variable epitope (1.85% per month). Previous studies have shown that targeting of antigens based on specific HLA types is associated with a better disease course. In this study we show that categorizing epitopes based on their variability is associated with clinical outcome.
PMCID: PMC3581067  PMID: 23140171
2.  Prospective Antiretroviral Treatment of Asymptomatic, HIV-1 Infected Controllers 
PLoS Pathogens  2013;9(10):e1003691.
The study of HIV-infected “controllers” who are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART. Similar reductions were observed in the subset of “elite” controllers with pre-ART plasma HIV RNA levels below conventional assays (<40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a chronic inflammatory state. ART should be considered for these individuals ( NCT01025427).
Author Summary
HIV-infected “controllers” are rare individuals who are HIV-seropositive but are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART). There has been intense interest in characterizing these unique individuals because they have been considered as a potential model for a “functional cure” of HIV. Previously, our group has shown that controllers have elevated levels of T cell activation and accelerated atherosclerosis, suggesting that very low levels of viral replication may lead to disproportionately high levels of immune activation. However, the degree to which viral replication contributes to these outcomes is not known. We therefore conducted the first, prospective study of ART initiation in a cohort of asymptomatic HIV-infected controllers, in order to determine the virologic and immunologic effects of treating controllers with ART. Controllers had a significant decreases in ultrasensitive plasma HIV RNA, rectal HIV RNA, and markers of T cell activation/dysfunction in blood and gut mucosa with ART. Similar reductions were observed in the subset of “elite” controllers with extremely low pre-ART plasma HIV RNA levels (<40 copies/mL). These data suggest that HIV replication persists in controllers and contributes to a chronic inflammatory state.
PMCID: PMC3795031  PMID: 24130489
3.  Differential Persistence of Transmitted HIV-1 Drug Resistance Mutation Classes 
The Journal of Infectious Diseases  2011;203(8):1174-1181.
Background. Transmitted human immunodeficiency virus type 1 (HIV-1) drug resistance (TDR) mutations can become replaced over time by emerging wild-type viral variants with improved fitness. The impact of class-specific mutations on this rate of mutation replacement is uncertain.
Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and São Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model.
Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7–408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log10 copies/mL; 95% CI, .90–3.25 log10 copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001).
Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.
PMCID: PMC3107558  PMID: 21451005
4.  Transmitted Drug Resistance in Persons with Acute/Early HIV-1 in San Francisco, 2002-2009 
PLoS ONE  2010;5(12):e15510.
Transmitted HIV-1 drug resistance (TDR) is an ongoing public health problem, representing 10–20% of new HIV infections in many geographic areas. TDR usually arises from two main sources: individuals on antiretroviral therapy (ART) who are failing to achieve virologic suppression, and individuals who acquired TDR and transmit it while still ART-naïve. TDR rates can be impacted when novel antiretroviral medications are introduced that allow for greater virologic suppression of source patients. Although several new HIV medications were introduced starting in late 2007, including raltegravir, maraviroc, and etravirine, it is not known whether the prevalence of TDR was subsequently affected in 2008–2009.
Methodology/Principal Findings
We performed population sequence genotyping on individuals who were diagnosed with acute or early HIV (<6 months duration) and who enrolled in the Options Project, a prospective cohort, between 2002 and 2009. We used logistic regression to compare the odds of acquiring drug-resistant HIV before versus after the arrival of new ART (2005–2007 vs. 2008–2009). From 2003–2007, TDR rose from 7% to 24%. Prevalence of TDR was then 15% in 2008 and in 2009. While the odds of acquiring TDR were lower in 2008–2009 compared to 2005–2007, this was not statistically significant (odds ratio 0.65, 95% CI 0.31–1.38; p = 0.27).
Our study suggests that transmitted drug resistance rose from 2003–2007, but this upward trend did not continue in 2008 and 2009. Nevertheless, the TDR prevalence in 2008–2009 remained substantial, emphasizing that improved management strategies for drug-resistant HIV are needed if TDR is to be further reduced. Continued surveillance for TDR will be important in understanding the full impact of new antiretroviral medications.
PMCID: PMC3000814  PMID: 21170322

Results 1-4 (4)