PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Differential Persistence of Transmitted HIV-1 Drug Resistance Mutation Classes 
The Journal of Infectious Diseases  2011;203(8):1174-1181.
Background. Transmitted human immunodeficiency virus type 1 (HIV-1) drug resistance (TDR) mutations can become replaced over time by emerging wild-type viral variants with improved fitness. The impact of class-specific mutations on this rate of mutation replacement is uncertain.
Methods. We studied participants with acute and/or early HIV infection and TDR in 2 cohorts (San Francisco, California, and São Paulo, Brazil). We followed baseline mutations longitudinally and compared replacement rates between mutation classes with use of a parametric proportional hazards model.
Results. Among 75 individuals with 195 TDR mutations, M184V/I became undetectable markedly faster than did nonnucleoside reverse-transcriptase inhibitor (NNRTI) mutations (hazard ratio, 77.5; 95% confidence interval [CI], 14.7–408.2; P < .0001), while protease inhibitor and NNRTI replacement rates were similar. Higher plasma HIV-1 RNA level predicted faster mutation replacement, but this was not statistically significant (hazard ratio, 1.71 log10 copies/mL; 95% CI, .90–3.25 log10 copies/mL; P = .11). We found substantial person-to-person variability in mutation replacement rates not accounted for by viral load or mutation class (P < .0001).
Conclusions. The rapid replacement of M184V/I mutations is consistent with known fitness costs. The long-term persistence of NNRTI and protease inhibitor mutations suggests a risk for person-to-person propagation. Host and/or viral factors not accounted for by viral load or mutation class are likely influencing mutation replacement and warrant further study.
doi:10.1093/infdis/jiq167
PMCID: PMC3107558  PMID: 21451005
2.  Transmitted Drug Resistance in Persons with Acute/Early HIV-1 in San Francisco, 2002-2009 
PLoS ONE  2010;5(12):e15510.
Background
Transmitted HIV-1 drug resistance (TDR) is an ongoing public health problem, representing 10–20% of new HIV infections in many geographic areas. TDR usually arises from two main sources: individuals on antiretroviral therapy (ART) who are failing to achieve virologic suppression, and individuals who acquired TDR and transmit it while still ART-naïve. TDR rates can be impacted when novel antiretroviral medications are introduced that allow for greater virologic suppression of source patients. Although several new HIV medications were introduced starting in late 2007, including raltegravir, maraviroc, and etravirine, it is not known whether the prevalence of TDR was subsequently affected in 2008–2009.
Methodology/Principal Findings
We performed population sequence genotyping on individuals who were diagnosed with acute or early HIV (<6 months duration) and who enrolled in the Options Project, a prospective cohort, between 2002 and 2009. We used logistic regression to compare the odds of acquiring drug-resistant HIV before versus after the arrival of new ART (2005–2007 vs. 2008–2009). From 2003–2007, TDR rose from 7% to 24%. Prevalence of TDR was then 15% in 2008 and in 2009. While the odds of acquiring TDR were lower in 2008–2009 compared to 2005–2007, this was not statistically significant (odds ratio 0.65, 95% CI 0.31–1.38; p = 0.27).
Conclusions
Our study suggests that transmitted drug resistance rose from 2003–2007, but this upward trend did not continue in 2008 and 2009. Nevertheless, the TDR prevalence in 2008–2009 remained substantial, emphasizing that improved management strategies for drug-resistant HIV are needed if TDR is to be further reduced. Continued surveillance for TDR will be important in understanding the full impact of new antiretroviral medications.
doi:10.1371/journal.pone.0015510
PMCID: PMC3000814  PMID: 21170322

Results 1-2 (2)