Search tips
Search criteria

Results 1-12 (12)

Clipboard (0)
Year of Publication
Document Types
1.  First-in-Human Phase I Study of PRS-050 (Angiocal), an Anticalin Targeting and Antagonizing VEGF-A, in Patients with Advanced Solid Tumors 
PLoS ONE  2013;8(12):e83232.
To report the nonrandomized first-in-human phase I trial of PRS-050, a novel, rationally engineered Anticalin based on human tear lipocalin that targets and antagonizes vascular endothelial growth factor A (VEGF-A).
Patients with advanced solid tumors received PRS-050 at 0.1 mg/kg to 10 mg/kg by IV in successive dosing cohorts according to the 3+3 escalation scheme. The primary end point was safety.
Twenty-six patients were enrolled; 25 were evaluable. Two patients experienced dose-limiting toxicity, comprising grade (G) 3 hypertension and G3 pyrexia, respectively. The maximum tolerated dose was not reached. Most commonly reported treatment-emergent adverse events (AEs) included chills (52%; G3, 4%), fatigue (52%; G3, 4%), hypertension (44%; G3, 16%), and nausea (40%, all G1/2). No anti–PRS-050 antibodies following multiple administration of the drug were detected. PRS-050 showed dose-proportional pharmacokinetics (PK), with a terminal half-life of approximately 6 days. Free VEGF-A was detectable at baseline in 9/25 patients, becoming rapidly undetectable after PRS-050 infusion for up to 3 weeks. VEGF-A/PRS-050 complex was detectable for up to 3 weeks at all dose levels, including in patients without detectable baseline-free VEGF-A. We also detected a significant reduction in circulating matrix metalloproteinase 2, suggesting this end point could be a pharmacodynamic (PD) marker of the drug’s activity.
PRS-050, a novel Anticalin with high affinity for VEGF-A, was well-tolerated when administered at the highest dose tested, 10 mg/kg. Based on target engagement and PK/PD data, the recommended phase II dose is 5 mg/kg every 2 weeks administered as a 120-minute infusion.
Trial Registration NCT01141257
PMCID: PMC3862718  PMID: 24349470
2.  Microsomal Prostaglandin E Synthase-2 Is Not Essential For In Vivo Prostaglandin E2 Biosynthesis 
Prostaglandin E2 (PGE2) plays an important role in the normal physiology of many organ systems. Increased levels of this lipid mediator are associated with many disease states, and it potently regulates inflammatory responses. Three enzymes capable of in vitro synthesis of PGE2 from the cyclooxygenase metabolite PGH2 have been described. Here, we examine the contribution of one of these enzymes to PGE2 production, mPges-2, which encodes microsomal prostaglandin synthase-2 (mPGES-2), by generating mice homozygous for the null allele of this gene. Loss of mPges-2 expression did not result in a measurable decrease in PGE2 levels in any tissue or cell type examined from healthy mice. Taken together, analysis of the mPGES-2 deficient mouse lines does not substantiate the contention that mPGES-2 is a PGE2 synthase.
PMCID: PMC3182462  PMID: 19010439
Microsomal Prostaglandin E2 Synthase-2; Prostaglandin E2
Hypertension  2010;55(2):531-538.
Prostaglandin (PG) E2 has multiple actions that may affect blood pressure. It is synthesized from arachidonic acid by the sequential actions of phospholipases, cyclooxygenases, and PGE synthases. While microsomal PGE synthase 1 (mPGES1) is the only genetically-verified PGE synthase, results of previous studies examining the consequences of mPGES1-deficiency on blood pressure (BP) are conflicting. To determine whether genetic background modifies the impact of mPGES1 on BP, we generated mPGES1−/− mice on two distinct inbred backgrounds, DBA/1lacJ and 129/SvEv. On the DBA/1 background, baseline BP was similar between wild-type (WT) and mPGES1−/− mice. By contrast, on the 129 background, baseline BPs were significantly higher in mPGES1−/− animals than WT controls. During angiotensin II infusion, the DBA/1 mPGES1−/− and WT mice developed mild hypertension of similar magnitude, while 129-mPGES1−/− mice developed more severe hypertension than WT controls. DBA/1 animals developed only minimal albuminuria in response to angiotensin II infusion. By contrast, WT 129 mice had significantly higher levels of albumin excretion than WT DBA/1 and the extent of albuminuria was further augmented in 129 mPGES1−/− animals. In WT mice of both strains, the increase in urinary excretion of PGE2 with angiotensin II was attenuated in mPGES1−/− animals. Urinary excretion of thromboxane was unaffected by angiotensin II in the DBA/1 lines but increased more than 4-fold in 129 mPGES1−/− mice. These data indicate that genetic background significantly modifies the BP response to mPGES1 deficiency. Exaggerated production of thromboxane may contribute to the robust hypertension and albuminuria in 129 mPGES1-deficient mice.
PMCID: PMC2836731  PMID: 20065147
prostanoids; PGE synthase; blood pressure; strain; hypertension
4.  Distinct expression profiles of Notch-1 protein in human solid tumors: Implications for development of targeted therapeutic monoclonal antibodies 
Biological therapies, such as monoclonal antibodies (mAbs) that target tumor-associated antigens have been considered an effective therapeutic approach in oncology. In considering Notch-1 receptor as a potential target, we performed immunohistochemistry on tissue microarrays to determine 1) whether the receptor is overexpressed in tumor cells as compared to their corresponding normal tissues and 2) the clinical significance of its expression levels in human breast, colorectal, lung and prostate cancers. We found that the expression of Notch-1 protein was overexpressed in primary colorectal adenocarcinoma and nonsmall cell lung carcinoma (NSCLC), but not in primary ductal breast carcinoma or prostate adenocarcinoma. Further analysis revealed that higher levels of Notch-1 protein expression were significantly associated with poorer differentiation of breast and prostate tumors. Strikingly, for NSCLC, the expression levels of Notch-1 protein were found to be inversely correlated with tumor differentiation and progression. For colorectal tumors, however, no correlation of Notch-1 protein expression was found with any tumor clinicopathological parameters, in spite of its overexpression in tumor cells. Our data demonstrated the complexity of Notch-1 protein expression in human solid tumors and further supported the notion that the roles of Notch-1 expression in tumorigenesis are highly context-dependent. The findings could provide the basis for development of distinct therapeutic strategies of Notch-1 mAbs for its applications in the treatment of suitable types of human cancers.
PMCID: PMC2898104  PMID: 20631820
Notch-1; target therapy; tissue microarray; immunohistochemistry
5.  Characterization of Notch1 Antibodies That Inhibit Signaling of Both Normal and Mutated Notch1 Receptors 
PLoS ONE  2010;5(2):e9094.
Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.
Principal Findings
Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC50 values as low as 5±3 nM and 0.13±0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR “class I” point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare “class II” or “class III” mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.
Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.
PMCID: PMC2817004  PMID: 20161710
6.  Genomic-Based High Throughput Screening Identifies Small Molecules That Differentially Inhibit the Antiviral and Immunomodulatory Effects of IFN-α 
Molecular Medicine  2008;14(7-8):374-382.
Multiple lines of evidence suggest that inhibition of Type I Interferons, including IFN-α, may provide a therapeutic benefit for autoimmune diseases. Using a chemical genomics approach integrated with cellular and in vivo assays, we screened a small compound library to identify modulators of IFN-α biological effects. A genomic fingerprint was developed from both ex vivo patient genomic information and in vitro gene modulation from IFN-α cell-based stimulation. A high throughput genomic-based screen then was applied to prioritize 268 small molecule inhibitors targeting 41 different intracellular signaling pathways. Active compounds were profiled further for their ability to inhibit the activation and differentiation of human monocytes using disease-related stimuli. Inhibitors targeting NF-κB or Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling emerged as “dissociated inhibitors” because they did not modulate IFN-α anti-viral effects against HSV-1 but potently inhibited other immune-related functions. This work describes a novel strategy to identify small molecule inhibitors for the treatment of autoimmune disorders.
PMCID: PMC2376640  PMID: 18475307
7.  Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis 
CP-690550 is a small molecule inhibitor of Janus kinase 3 (JAK3), a critical enzyme in the signaling pathway of multiple cytokines (interleukin (IL)-2, -7, -15 and -21) that are important in various T cell functions including development, activation and homeostasis. The purpose of this study was to evaluate CP-690550 in murine collagen-induced (CIA) and rat adjuvant-induced (AA) models of rheumatoid arthritis (RA).
CIA and AA were induced using standard protocols and animals received the JAK3 inhibitor via osmotic mini-pump infusion at doses ranging from 1.5–15 mg/kg/day following disease induction. Arthritis was assessed by clinical scores in the CIA models and paw swelling monitored using a plethysmometer in the AA model until study conclusion, at which time animals were killed and evaluated histologically.
CP-690550 dose-dependently decreased endpoints of disease in both RA models with greater than 90% reduction observed at the highest administered dose. An approximate ED50 of approximately 1.5 mg/kg/day was determined for the compound based upon disease endpoints in both RA models examined and corresponds to CP-690550 serum levels of 5.8 ng/ml in mice (day 28) and 24 ng/ml in rats (day 24). The compound also reduced inflammatory cell influx and joint damage as measured histologically. Animals receiving a CP-690550 dose of 15 mg/k/d showed no histological evidence of disease.
The efficacy observed with CP-690550 in CIA and AA suggests JAK3 inhibition may represent a novel therapeutic target for the treatment of RA.
PMCID: PMC2374467  PMID: 18234077
8.  Neutrophil-derived leukotriene B4 is required for inflammatory arthritis 
Neutrophils serve as a vanguard of the acute innate immune response to invading pathogens. Neutrophils are also abundant at sites of autoimmune inflammation, such as the rheumatoid joint, although their pathophysiologic role is incompletely defined and relevant effector functions remain obscure. Using genetic and pharmacologic approaches in the K/BxN serum transfer model of arthritis, we find that autoantibody-driven erosive synovitis is critically reliant on the generation of leukotrienes, and more specifically on leukotriene B4 (LTB4), for disease induction as well as perpetuation. Pursuing the cellular source for this mediator, we find via reconstitution experiments that mast cells are a dispensable source of leukotrienes, whereas arthritis susceptibility can be restored to leukotriene-deficient mice by intravenous administration of wild-type neutrophils. These experiments demonstrate a nonredundant role for LTB4 in inflammatory arthritis and define a neutrophil mediator involved in orchestrating the synovial eruption.
PMCID: PMC2118292  PMID: 16567388
9.  The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis 
Rheumatoid arthritis (RA) is a chronic inflammatory disorder leading to bone and cartilage destruction. A substantial body of evidence suggests that prostaglandin E2 (PGE2) contributes to the pathogenesis of RA, and nonsteroidal anti-inflammatory drugs, inhibitors of the synthesis of PGE2 and other prostanoids, continue to be used in the treatment of this disease. To begin to understand the mechanism by which prostaglandins modulate the pathophysiology of this disease, we examined mice lacking each of the four known PGE2 (EP) receptors after generation of collagen antibody–induced arthritis, an animal model of RA. Homozygous deletion of the EP1, EP2, or EP3 receptors did not affect the development of arthritis, whereas EP4 receptor–deficient mice showed decreased incidence and severity of disease. These animals also showed reduced inflammation as assessed by circulating IL-6 and serum amyloid A levels. Joint histopathology of EP4–/– animals revealed reduced bone destruction, proteoglycan loss, and type II collagen breakdown in cartilage compared with EP4+/+ mice. Furthermore, liver and macrophages isolated from EP4–/– animals produced significantly less IL-1β and IL-6 than control samples. Thus, PGE2 contributes to disease progression at least in part by binding to the EP4 receptor. Antagonists of this receptor might therefore provide novel agents for the treatment of RA.
PMCID: PMC151107  PMID: 12208866
10.  The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure 
Journal of Clinical Investigation  2001;107(3):325-331.
The lipid mediator prostaglandin E2 (PGE2) has diverse biological activity in a variety of tissues. Four different receptor subtypes (EP1–4) mediate these wide-ranging effects. The EP-receptor subtypes differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To identify the physiological roles for one of these receptors, the EP1 receptor, we generated EP1-deficient (EP1–/–) mice using homologous recombination in embryonic stem cells derived from the DBA/1lacJ strain of mice. The EP1–/– mice are healthy and fertile, without any overt physical defects. However, their pain-sensitivity responses, tested in two acute prostaglandin-dependent models, were reduced by approximately 50%. This reduction in the perception of pain was virtually identical to that achieved through pharmacological inhibition of prostaglandin synthesis in wild-type mice using a cyclooxygenase inhibitor. In addition, systolic blood pressure is significantly reduced in EP1 receptor–deficient mice and accompanied by increased renin-angiotensin activity, especially in males, suggesting a role for this receptor in cardiovascular homeostasis. Thus, the EP1 receptor for PGE2 plays a direct role in mediating algesia and in regulation of blood pressure.
PMCID: PMC199184  PMID: 11160156
11.  Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway 
Journal of Clinical Investigation  1999;104(12):1693-1701.
The renin-angiotensin system (RAS) is a key regulator of vascular tone and blood pressure. In addition, angiotensin II also has a number of cellular effects that may contribute to disease pathogenesis. Using Agtr1a–/– mice, which lack AT1A receptors for angiotensin II, we have identified a novel function of the RAS to modulate the immune system. We find that angiotensin II, acting through type 1 (AT1) receptors on immune cells, triggers the proliferation of splenic lymphocytes. These actions contribute to the vigor of cellular alloimmune responses. Within lymphoid organs, sufficient components of the RAS are present to activate AT1 receptors during an immune response, promoting cell growth. These actions require activation of calcineurin phosphatase. In an in vivo model of cardiac transplantation, the absence of AT1 signaling accentuates the immunosuppressive effects of the calcineurin inhibitor cyclosporine. We conclude that inhibition of AT1 receptor signaling should be useful as an anti-inflammatory and immunosuppressive therapy. Furthermore, the actions of the RAS to promote lymphocyte activation may contribute to inflammation that characterizes a number of diseases of the heart and the vascular system.
J. Clin. Invest. 104:1693–1701 (1999).
PMCID: PMC409880  PMID: 10606623
12.  Reproductive failure and reduced blood pressure in mice lacking the EP2 prostaglandin E2 receptor 
Journal of Clinical Investigation  1999;103(11):1539-1545.
Prostaglandins (PGs) are bioactive lipids that modulate a broad spectrum of biologic processes including reproduction and circulatory homeostasis. Although reproductive functions of mammals are influenced by PGs at numerous levels, including ovulation, fertilization, implantation, and decidualization, it is not clear which PGs are involved and whether a single mechanism affects all reproductive functions. Using mice deficient in 1 of 4 prostaglandin E2 (PGE2) receptors — specifically, the EP2 receptor — we show that Ep2–/– females are infertile secondary to failure of the released ovum to become fertilized in vivo. Ep2–/– ova could be fertilized in vitro, suggesting that in addition to previously defined roles, PGs may contribute to the microenvironment in which fertilization takes place. In addition to its effects on reproduction, PGE2 regulates regional blood flow in various vascular beds. However, its role in systemic blood pressure homeostasis is not clear. Mice deficient in the EP2 PGE2 receptor displayed resting systolic blood pressure that was significantly lower than in wild-type controls. Blood pressure increased in these animals when they were placed on a high-salt diet, suggesting that the EP2 receptor may be involved in sodium handling by the kidney. These studies demonstrate that PGE2, acting through the EP2 receptor, exerts potent regulatory effects on two major physiologic processes: blood pressure homeostasis and in vivo fertilization of the ovum.
PMCID: PMC408376  PMID: 10359563

Results 1-12 (12)