PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Crystallization and preliminary X-ray diffraction studies of a terminal oxygenase of carbazole 1,9a-­dioxygenase from Novosphingobium sp. KA1 
The terminal oxygenase component (Oxy) of carbazole 1,9a-dioxygenase (CARDO) catalyzes dihydroxylation of the aromatic ring. The Oxy of CARDO from Novosphingobium sp. KA1 was crystallized and the crystals diffracted to a resolution of 2.1 Å.
Carbazole 1,9a-dioxygenase (CARDO) is the initial dioxygenase in the carbazole-degradation pathway of Novosphingobium sp. KA1. The CARDO from KA1 consists of a terminal oxygenase (Oxy), a putidaredoxin-type ferredoxin and a ferredoxin reductase. The Oxy from Novosphingobium sp. KA1 was crystallized at 277 K using the hanging-drop vapour-diffusion method with ammonium sulfate as the precipitant. Diffraction data were collected to a resolution of 2.1 Å. The crystals belonged to the monoclinic space group P21. Self-rotation function analysis suggested that the asymmetric unit contained two Oxy trimers; the Matthews coefficient and solvent content were calculated to be 5.9 Å3 Da−1 and 79.1%, respectively.
doi:10.1107/S1744309110034949
PMCID: PMC3001653  PMID: 21045300
carbazole; Novosphingobium; Rieske nonhaem iron oxygenases; sphingomonads; terminal oxygenases
2.  Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase 
Background
Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs), often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os) is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO), a RO member consists of catalytic terminal oxygenase (CARDO-O), ferredoxin (CARDO-F), and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex.
Results
In the present study, we determined the crystal structures of the reduced carbazole (CAR)-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III)-(hydro)peroxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding.
Conclusions
The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand residue) that create room for oxygen binding. Dioxygen bound in a side-on fashion onto nonheme iron is activated by reduction to the peroxo state [Fe(III)-(hydro)peroxo]. This state may react directly with the bound substrate, or O–O bond cleavage may occur to generate Fe(V)-oxo-hydroxo species prior to the reaction. After producing a cis-dihydrodiol, the product is released by reducing the nonheme iron. This proposed scheme describes the catalytic cycle of ROs and provides important information for a better understanding of the mechanism.
doi:10.1186/1472-6807-12-15
PMCID: PMC3423008  PMID: 22727022
3.  Crystallization and preliminary X-ray diffraction studies of a ferredoxin reductase component of carbazole 1,9a-dioxygenase from Novosphingobium sp. KA1 
The ferredoxin reductase component of carbazole 1,9a-dioxygenase (Red) is involved in electron transfer from NAD(P)H to ferredoxin. The class IIA Red from Novosphingobium sp. KA1 was crystallized and the crystal diffracted to a resolution of 1.58 Å.
Carbazole 1,9a-dioxygenase (CARDO) is the initial enzyme of the carbazole-degradation pathway. The CARDO of Novosphingobium sp. KA1 consists of a terminal oxygenase, a putidaredoxin-type ferredoxin and a ferredoxin-NADH oxidoreductase (Red) and is classified as a class IIA Rieske oxygenase. Red from KA1 was crystallized at 278 K by the hanging-drop vapour-diffusion method using PEG 4000. The crystal diffracted to 1.58 Å resolution and belonged to space group P32, with unit-cell parameters a = b = 92.2, c = 78.6 Å, α = γ = 90, β = 120°. Preliminary analysis of the X-ray diffraction data revealed that the asymmetric unit contained two Red monomers. The crystal appeared to be a merohedral twin, with a twin fraction of 0.32 and twin law (−h, −k, l).
doi:10.1107/S1744309110014491
PMCID: PMC2882777  PMID: 20516607
carbazole; Rieske nonhaem iron oxygenases; ferredoxin reductases
4.  Crystallization and preliminary X-ray diffraction studies of a novel ferredoxin involved in the dioxygenation of carbazole by Novosphingobium sp. KA1 
The ferredoxin component of carbazole 1,9a-dioxygenase (CARDO-F) is involved in an electron-transfer reaction. The CARDO-F from Novosphingobium sp. KA1 was crystallized under anaerobic conditions and diffracted to a resolution of 1.9 Å.
Novosphingobium sp. KA1 uses carbazole 1,9a-dioxygenase (CARDO) as the first dioxygenase in its carbazole-degradation pathway. The CARDO of KA1 contains a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. In contrast to the CARDO systems of other species, the ferredoxin component of KA1 is a putidaredoxin-type protein. This novel ferredoxin was crystallized at 293 K by the hanging-drop vapour-diffusion method using PEG MME 550 as the precipitant under anaerobic conditions. The crystals belong to space group C2221 and diffraction data were collected to a resolution of 1.9 Å (the diffraction limit was 1.6 Å).
doi:10.1107/S1744309108016278
PMCID: PMC2443972  PMID: 18607094
carbazole; putidaredoxin-type proteins; Rieske nonhaem iron oxygenases
5.  Crystallization and preliminary crystallographic analysis of the ferredoxin component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 
The ferredoxin component of carbazole 1,9a-dioxygenase from N. aromaticivorans IC177 was crystallized and diffraction data were collected to 2.0 Å resolution.
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. CARDO consists of a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. The ferredoxin component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 was crystallized at 293 K using the hanging-drop vapour-diffusion method with ammonium sulfate as the precipitant. The crystals, which were improved by macroseeding, diffract to 2.0 Å resolution and belong to space group P41212.
doi:10.1107/S1744309107041437
PMCID: PMC2339720  PMID: 17909288
ferredoxins; carbazole; Rieske nonhaem iron oxygenase system; Rieske-type proteins
6.  Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase 
The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution.
Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P42212, with unit-cell parameters a = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.
doi:10.1107/S174430910702163X
PMCID: PMC2335075  PMID: 17554172
angular dioxygenases; NAD(P)H:ferredoxin oxidoreductases; Rieske nonhaem iron oxygenase system; electron transfer; carbazole
7.  Crystallization and preliminary X-ray diffraction studies of the terminal oxygenase component of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 
The terminal oxygenase component of carbazole 1,9a-dioxygenase from N. aromaticivorans IC177 was crystallized and diffraction data were collected to 2.30 Å resolution.
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular-position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. CARDO consists of a terminal oxygenase component and two electron-transfer components: ferredoxin and ferredoxin reductase. The terminal oxygenase component (43.9 kDa) of carbazole 1,9a-dioxygenase from Nocardioides aromaticivorans IC177 was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 8000 as the precipitant. The crystals diffract to 2.3 Å resolution and belong to space group C2.
doi:10.1107/S1744309106044939
PMCID: PMC2225353  PMID: 17142899
angular dioxygenases; carbazole; Rieske nonhaem iron oxygenase system; Rieske-type protein
8.  Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase 
The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution.
Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-­O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P21, with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R merge of 8.0% and a completeness of 100%. Its V M value is 2.63 Å3 Da−1, indicating a solvent content of 53.2%.
doi:10.1107/S1744309105014557
PMCID: PMC1952320  PMID: 16511100
angular dioxygenases; carbazole; electron-transfer complexes; Rieske non-haem iron oxygenase systems; Rieske-type ferredoxins; Rieske-type proteins

Results 1-8 (8)