PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  CC Chemokine Receptor 5 Genotype and Susceptibility to Transmission of Human Immunodeficiency Virus Type 1 in Women 
The Journal of Infectious Diseases  2003;187(4):569-575.
The human gene for CC chemokine receptor 5, a coreceptor for human immunodeficiency virus type 1 (HIV-1), affects susceptibility to infection. Most studies of predominantly male cohorts found that individuals carrying a homozygous deleted form of the gene, Δ32, were protected against transmission, but protection did not extend to Δ32 heterozygotes. The role played by this mutation in HIV-1 transmission to women was studied in 2605 participants in the Women's Interagency HIV Study. The Δ32 gene frequency was 0.026 for HIV-1–seropositive women and 0.040 for HIV-1–seronegative women, and statistical analyses showed that Δ32 heterozygotes were significantly less likely to be infected (odds ratio, 0.63 [95% confidence interval, 0.44–0.90]). The CCR5 Δ32 heterozygous genotype may confer partial protection against HIV-1 infection in women. Because Δ32 is rare in Africans and Asians, it seems plausible that differential genetic susceptibility, in addition to social and behavioral factors, may contribute to the rapid heterosexual spread of HIV-1 in Africa and Asia.
doi:10.1086/367995
PMCID: PMC3319124  PMID: 12599073
2.  CCR2 Genotype and Disease Progression in a Treated Population of HIV Type 1–Infected Women 
Both antiretroviral therapy and the human coreceptor polymorphism CCR2-V64I slow progression of human immunodeficiency virus type 1 (HIV-1) disease. To examine the effect of V64I on disease progression in patients receiving therapy, we determined CCR2 genotypes in the Women’s Interagency HIV Study cohort. We studied 2047 HIV-1–infected women, most of whom initiated treatment during the study. No association was seen between CCR2 genotype and either disease progression or therapeutic response, suggesting that the benefits of treatment most likely overshadow the salutary effects of the V64I polymorphism.
doi:10.1086/423386
PMCID: PMC3164116  PMID: 15472820
3.  Human Immunodeficiency Virus Type 1 Genomic RNA Sequences in the Female Genital Tract and Blood: Compartmentalization and Intrapatient Recombination 
Journal of Virology  2005;79(1):353-363.
Investigation of human immunodeficiency virus type 1 (HIV-1) in the genital tract of women is crucial to the development of vaccines and therapies. Previous analyses of HIV-1 in various anatomic sites have documented compartmentalization, with viral sequences from each location that were distinct yet phylogenetically related. Full-length RNA genomes derived from different compartments in the same individual, however, have not yet been studied. Furthermore, although there is evidence that intrapatient recombination may occur frequently, recombinants comprising viruses from different sites within one individual have rarely been documented. We compared full-length HIV-1 RNA sequences in the plasma and female genital tract, focusing on a woman with high HIV-1 RNA loads in each compartment who had been infected heterosexually and then transmitted HIV-1 by the same route. We cloned and sequenced 10 full-length HIV-1 RNA genomes from her genital tract and 10 from her plasma. We also compared viral genomes from the genital tract and plasma of four additional heterosexually infected women, sequencing 164 env and gag clones obtained from the two sites. Four of five women, including the one whose complete viral sequences were determined, displayed compartmentalized HIV-1 genomes. Analyses of full-length, compartmentalized sequences made it possible to document complex intrapatient HIV-1 recombinants that were composed of alternating viral sequences characteristic of each site. These findings demonstrate that the genital tract and blood harbor genetically distinct populations of replicating HIV-1 and provide evidence that recombination between strains from the two compartments contributes to rapid evolution of viral sequence variation in infected individuals.
doi:10.1128/JVI.79.1.353-363.2005
PMCID: PMC538688  PMID: 15596829
4.  Evolution of Human Immunodeficiency Virus Type 1 Coreceptor Usage during Antiretroviral Therapy: a Bayesian Approach 
Journal of Virology  2004;78(20):11296-11302.
There is substantial evidence for ongoing replication and evolution of human immunodeficiency virus type 1 (HIV-1), even in individuals receiving highly active antiretroviral therapy. Viral evolution in the presence of antiviral therapy needs to be considered when developing new therapeutic strategies. Phylogenetic analyses of HIV-1 sequences can be used for this purpose but may give rise to misleading results if rates of intrapatient evolution differ significantly. To improve analyses of HIV-1 evolution relevant to studies of pathogenesis and treatment, we developed a Bayesian hierarchical model that incorporates all available sequence data while simultaneously allowing the phylogenetic parameters of each patient to vary. We used this method to examine evolutionary changes in HIV-1 coreceptor usage in response to treatment. We examined patients whose viral populations exhibited a shift in coreceptor utilization in response to therapy. CXCR4 (X4) strains emerged in each patient but were suppressed following initiation of new antiretroviral regimens, so that CCR5-utilizing (R5) strains predominated. By phylogenetically reconstructing the evolutionary relationship of HIV-1 obtained longitudinally from each patient, it was possible to examine the origin of the reemergent R5 virus. Using our Bayesian hierarchical approach, we found that the reemergent R5 virus detectable after therapy was more closely related to the predecessor R5 virus than to the X4 strains. The Bayesian hierarchical approach, unlike more traditional methods, makes it possible to evaluate competing hypotheses across patients. This model is not limited to analyses of HIV-1 but can be used to elucidate evolutionary processes for other organisms as well.
doi:10.1128/JVI.78.20.11296-11302.2004
PMCID: PMC521818  PMID: 15452249
5.  Preferential suppression of CXCR4-specific strains of HIV-1 by antiviral therapy 
Journal of Clinical Investigation  2001;107(4):431-438.
To initiate infection, HIV-1 requires a primary receptor, CD4, and a secondary receptor, principally the chemokine receptor CCR5 or CXCR4. Coreceptor usage plays a critical role in HIV-1 disease progression. HIV-1 transmitted in vivo generally uses CCR5 (R5), but later CXCR4 (X4) strains may emerge; this shift heralds CD4+ cell depletion and clinical deterioration. We asked whether antiretroviral therapy can shift HIV-1 populations back to R5 viruses after X4 strains have emerged, in part because treatment has been successful in slowing disease progression without uniformly suppressing plasma viremia. We analyzed the coreceptor usage of serial primary isolates from 15 women with advanced disease who demonstrated X4 viruses. Coreceptor usage was determined by using a HOS-CD4+ cell system, biological and molecular cloning, and sequencing the envelope gene V3 region. By constructing a mathematical model to measure the proportion of virus in a specimen using each coreceptor, we demonstrated that the predominant viral population shifted from X4 at baseline to R5 strains after treatment. Multivariate analyses showed that the shift was independent of changes in plasma HIV-1 RNA level and CD4+ cell count. Hence, combination therapy may lead to a change in phenotypic character as well as in the quantity of HIV-1. Shifts in coreceptor usage may thereby contribute to the clinical efficacy of anti-HIV drugs.
PMCID: PMC199259  PMID: 11181642

Results 1-5 (5)