PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Abnormal autonomic and associated brain activities during rest in autism spectrum disorder 
Brain  2014;137(1):153-171.
Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition.
doi:10.1093/brain/awt294
PMCID: PMC3891443  PMID: 24424916
autism; autonomic nervous system; emotion; skin conductance; resting state
2.  In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism 
Brain research  2010;1380:198-205.
Attentional dysfunction is one of the most consistent findings in individuals with autism spectrum disorders (ASD). However, the significance of such findings for the pathophysiology of autism is unclear. In this study, we investigated cellular neurochemistry with proton magnetic resonance spectroscopy imaging (1H-MRS) in brain regions associated with networks subserving alerting, orienting, and executive control of attention in patients with ASD. Concentrations of cerebral N-acetyl-aspartate (NAA), creatinine + phosphocreatinine, choline-containing compounds, myo-inositol (Ins) and glutamate + glutamine (Glx) were determined by 3 T 1H-MRS examinations in 14 high-functioning medication-free adults with a diagnosis of ASD and 14 age- and IQ-matched healthy controls (HC) in the anterior cingulate cortex (ACC), thalamus, temporoparietal junction (TPJ), and areas near or along the intraparietal sulcus (IPS). Compared to HC group, the ASD group showed significantly lower Glx concentrations in right ACC and reduced Ins in left TPJ. This study provides evidence of abnormalities in neurotransmission related to networks subserving executive control and alerting of attention, functions which have been previously implicated in ASD pathogenesis.
doi:10.1016/j.brainres.2010.12.057
PMCID: PMC3073642  PMID: 21185269
autism; spectroscopy; glutamate; anterior cingulate cortex; intraparietal sulcus; myo-inositol

Results 1-2 (2)