PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  A missense founder mutation in VLDLR is associated with Dysequilibrium Syndrome without quadrupedal locomotion 
BMC Medical Genetics  2012;13:80.
Background
Dysequilibrium syndrome is a genetically heterogeneous condition that combines autosomal recessive, nonprogressive cerebellar ataxia with mental retardation. The condition has been classified into cerebellar ataxia, mental retardation and disequilibrium syndrome types 1 (CAMRQ1), 2 (CAMRQ2) and 3 (CAMRQ3) and attributed to mutations in VLDLR, CA8 and WDR81 genes, respectively. Quadrupedal locomotion in this syndrome has been reported in association with mutations in all three genes.
Methods
SNP mapping and candidate gene sequencing in one consanguineous Omani family from the United Arab Emirates with cerebellar hypoplasia, moderate mental retardation, delayed ambulation and truncal ataxia was used to identify the mutation. In a second unrelated consanguineous Omani family, massively parallel exonic sequencing was used.
Results
We identified a homozygous missense mutation (c.2117 G > T, p.C706F) in the VLDLR gene in both families on a shared affected haplotype block.This is the first reported homozygous missense mutation in VLDLR and it occurs in a highly conserved residue and predicted to be damaging to protein function.
Conclusions
We have delineated the phenotype associated with dysequilibrium syndrome in two Omani families and identified the first homozygous missense pathogenic mutation in VLDLR gene with likely founder effect in the southeastern part of the Arabian Peninsula.
doi:10.1186/1471-2350-13-80
PMCID: PMC3495048  PMID: 22973972
2.  A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance 
Background
We previously reported the existence of a unique autosomal recessive syndrome consisting of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance mapping to chromosome 15q26.
Methods
In this manuscript, we have used whole exome sequencing on two affected members of a consanguineous family with this condition and carried out detailed bioinformatics analysis to elucidate the causative mutation.
Results
Our analysis resulted in the identification of a homozygous p.N1060S missense mutation in a highly conserved residue in KIF7, a regulator of Hedgehog signaling that has been recently found to be causing Joubert syndrome, fetal hydrolethalus and acrocallosal syndromes. The phenotype in our patients partially overlaps with the phenotypes associated with those syndromes but they also exhibit some distinctive features including multiple epiphyseal dysplasia.
Conclusions
We report the first missense homozygous disease-causing mutation in KIF7 and expand the clinical spectrum associated with mutations in this gene to include multiple epiphyseal dysplasia. The missense nature of the mutation might account for the unique presentation in our patients.
doi:10.1186/1750-1172-7-27
PMCID: PMC3492204  PMID: 22587682
KIF7; Acrocallosal; Joubert; Sonic hedgehog; Dysmorphism; Multiple epiphyseal dysplasia; Fetal hydrolethalus

Results 1-2 (2)