Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Prefrontal cortex and hybrid learning during iterative competitive games 
Behavioral changes driven by reinforcement and punishment are referred to as simple or model-free reinforcement learning. Animals can also change their behaviors by observing events that are neither appetitive nor aversive, when these events provide new information about payoffs available from alternative actions. This is an example of model-based reinforcement learning, and can be accomplished by incorporating hypothetical reward signals into the value functions for specific actions. Recent neuroimaging and single-neuron recording studies showed that the prefrontal cortex and the striatum are involved not only in reinforcement and punishment, but also in model-based reinforcement learning. We found evidence for both types of learning, and hence hybrid learning, in monkeys during simulated competitive games. In addition, in both the dorsolateral prefrontal cortex and orbitofrontal cortex, individual neurons heterogeneously encoded signals related to actual and hypothetical outcomes from specific actions, suggesting that both areas might contribute to hybrid learning.
PMCID: PMC3302724  PMID: 22145879
belief learning; decision making; game theory; reinforcement learning; reward
2.  Distributed coding of actual and hypothetical outcomes in the orbital and dorsolateral prefrontal cortex 
Neuron  2011;70(4):731-741.
Knowledge about hypothetical outcomes from unchosen actions is beneficial only when such outcomes can be correctly attributed to specific actions. Here, we show that during a simulated rock-paper-scissors game, rhesus monkeys can adjust their choice behaviors according to both actual and hypothetical outcomes from their chosen and unchosen actions, respectively. In addition, neurons in both dorsolateral prefrontal cortex and orbitofrontal cortex encoded the signals related to actual and hypothetical outcomes immediately after they were revealed to the animal. Moreover, compared to the neurons in the orbitofrontal cortex, those in the dorsolateral prefrontal cortex were more likely to change their activity according to the hypothetical outcomes from specific actions. Conjunctive and parallel coding of multiple actions and their outcomes in the prefrontal cortex might enhance the efficiency of reinforcement learning and also contribute to their context-dependent memory.
PMCID: PMC3104017  PMID: 21609828

Results 1-2 (2)