Search tips
Search criteria

Results 1-25 (714)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
2.  Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases 
BMC Molecular Biology  2014;15:13.
The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases.
In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines.
Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases.
PMCID: PMC4099384  PMID: 24997498
Transcription activator-like effectors; TALE; TALEN; Protein engineering; Genome editing
3.  Ribonomic analysis of human DZIP1 reveals its involvement in ribonucleoprotein complexes and stress granules 
BMC Molecular Biology  2014;15:12.
DZIP1 (DAZ-interacting protein 1) has been described as a component of the Hh signaling pathway with a putative regulatory role in ciliogenesis. DZIP1 interacts with DAZ RNA binding proteins in embryonic stem cells and human germ cells suggesting a role in mRNA regulation.
We investigated DZIP1 function in HeLa cells and its involvement in ribonucleoprotein complexes. DZIP1 was predominantly located in granules in the cytoplasm. Under oxidative stress conditions, DZIP1 re-localized to stress granules. DZIP appears to be important for the formation of stress granules during the stress response. We used immunoprecipitation assays with antibodies against DZIP1 and microarray hybridization to identify mRNAs associated with DZIP1. The genetic networks formed by the DZIP1-associated mRNAs were involved in cell cycle and gene expression regulation. DZIP1 is involved in the Hedgehog signaling pathway. We used cyclopamine, a specific inhibitor of this pathway, to analyze the expression of DZIP1 and its associated mRNAs. The abundance of DZIP1-associated mRNAs increased with treatment; however, the silencing or overexpression of DZIP1 in HeLa cells had no effect on the accumulation of the associated mRNAs. Polysomal profile analysis by sucrose gradient centrifugation demonstrated the presence of DZIP1 in the polysomal fraction.
Our results suggest that DZIP1 is part of an RNP complex that occupies various subcellular locations. The diversity of the mRNAs associated with DZIP1 suggests that this protein is a component of different RNPs associated with translating polysomes and with RNA granules.
PMCID: PMC4091656  PMID: 24993635
DZIP1; Ribonucleoprotein; Stress granules; Polysome; Hedgehog signaling
4.  Identification of a common reference gene pair for qPCR in human mesenchymal stromal cells from different tissue sources treated with VEGF 
BMC Molecular Biology  2014;15:11.
Human mesenchymal stromal cells from the bone marrow (BMSCs) are widely used as experimental regenerative treatment of ischemic heart disease, and the first clinical trials using adipose-derived stromal cells (ASCs) are currently being conducted. Regenerative mechanisms of BMSCs and ASCs are manifold and in vitro pretreatment of the cells with growth factors has been applied to potentially enhance these properties. When characterizing the transcriptional activity of these cellular mechanisms in vitro it is important to consider the effect of the growth factor treatment on reference genes (RGs) for the normalization of qPCR data.
BMSCs and ASCs were stimulated with vascular endothelial growth factor A-165 (VEGF) for one week, and compared with un-stimulated cells from the same donor. The stability of nine RGs through VEGF treatment as well as the donor variation was assessed using the GenEx software with the subprograms geNorm and Normfinder.
The procedure of stepwise elimination was validated by poor performance of eliminated RGs in a normalization experiment using vWF as target gene. Normfinder found the TATA box binding protein (TBP) to be the most stable single RG for both BMSCs and ASCs. The optimal number of RGs for ASCs was two, and the lowest variance for vWF normalization was found using TBP and YWHAZ. For BMSCs, the optimal number of RGs was four, while the two-RG combination producing the most similar results was TBP and YWHAZ.
A common reference gene, TBP, was found to be the most stable standalone gene, while TBP and YWHAZ were found to be the best two-RG combination for qPCR analyses for both BMSCs and ASCs through the VEGF stimulation. The presented stepwise elimination procedure was validated, while we found the final normalization experiment to be essential.
PMCID: PMC4045907  PMID: 24885696
Adipose-derived stromal cell; ASC; ADSC; MIQE; qPCR; Reference gene; Mesenchymal stromal cell; MSC; Vascular endothelial growth factor; VEGF
5.  Single and combinatorial chromatin coupling events underlies the function of transcript factor krüppel-like factor 11 in the regulation of gene networks 
BMC Molecular Biology  2014;15:10.
Krüppel-like factors (KLFs) are a group of master regulators of gene expression conserved from flies to human. However, scant information is available on either the mechanisms or functional impact of the coupling of KLF proteins to chromatin remodeling machines, a deterministic step in transcriptional regulation.
Results and discussion
In the current study, we use genome-wide analyses of chromatin immunoprecipitation (ChIP-on-Chip) and Affymetrix-based expression profiling to gain insight into how KLF11, a human transcription factor involved in tumor suppression and metabolic diseases, works by coupling to three co-factor groups: the Sin3-histone deacetylase system, WD40-domain containing proteins, and the HP1-histone methyltransferase system. Our results reveal that KLF11 regulates distinct gene networks involved in metabolism and growth by using single or combinatorial coupling events.
This study, the first of its type for any KLF protein, reveals that interactions with multiple chromatin systems are required for the full gene regulatory function of these proteins.
PMCID: PMC4049485  PMID: 24885560
Krüppel-like factor; Transcription factor; Gene expression profiling; Gene networks; Metabolism; Cellular growth; Proliferation; Signaling pathways
6.  Differential regulation of the α-globin locus by Krüppel-like factor 3 in erythroid and non-erythroid cells 
Krüppel-like Factor 3 (KLF3) is a broadly expressed zinc-finger transcriptional repressor with diverse biological roles. During erythropoiesis, KLF3 acts as a feedback repressor of a set of genes that are activated by Krüppel-like Factor 1 (KLF1). Noting that KLF1 binds α-globin gene regulatory sequences during erythroid maturation, we sought to determine whether KLF3 also interacts with the α-globin locus to regulate transcription.
We found that expression of a human transgenic α-globin reporter gene is markedly up-regulated in fetal and adult erythroid cells of Klf3−/− mice. Inspection of the mouse and human α-globin promoters revealed a number of canonical KLF-binding sites, and indeed, KLF3 was shown to bind to these regions both in vitro and in vivo. Despite these observations, we did not detect an increase in endogenous murine α-globin expression in Klf3 −/− erythroid tissue. However, examination of murine embryonic fibroblasts lacking KLF3 revealed significant de-repression of α-globin gene expression. This suggests that KLF3 may contribute to the silencing of the α-globin locus in non-erythroid tissue. Moreover, ChIP-Seq analysis of murine fibroblasts demonstrated that across the locus, KLF3 does not occupy the promoter regions of the α-globin genes in these cells, but rather, binds to upstream, DNase hypersensitive regulatory regions.
These findings reveal that the occupancy profile of KLF3 at the α-globin locus differs in erythroid and non-erythroid cells. In erythroid cells, KLF3 primarily binds to the promoters of the adult α-globin genes, but appears dispensable for normal transcriptional regulation. In non-erythroid cells, KLF3 distinctly binds to the HS-12 and HS-26 elements and plays a non-redundant, albeit modest, role in the silencing of α-globin expression.
PMCID: PMC4033687  PMID: 24885809
KLF1; KLF3; Alpha globin; Globin gene regulation; Transcription factor
7.  Validation of housekeeping gene and impact on normalized gene expression in clear cell Renal Cell Carcinoma: critical reassessment of YBX3/ZONAB/CSDA expression 
YBX3/ZONAB/CSDA is an epithelial-specific transcription factor acting in the density-based switch between proliferation and differentiation. Our laboratory reported overexpression of YBX3 in clear cell renal cell arcinoma (ccRCC), as part of a wide study of YBX3 regulation in vitro and in vivo. The preliminary data was limited to 5 cases, of which only 3 could be compared to paired normal tissue, and beta-Actin was used as sole reference to normalize gene expression. We thus decided to re-evaluate YBX3 expression by real-time-PCR in a larger panel of ccRCC samples, and their paired healthy tissue, with special attention on experimental biases such as inter-individual variations, primer specificity, and reference gene for normalization.
Gene expression was measured by RT-qPCR in 16 ccRCC samples, each compared to corresponding healthy tissue to minimize inter-individual variations. Eight potential housekeeping genes were evaluated for expression level and stability among the 16-paired samples. Among tested housekeeping genes, PPIA and RPS13, especially in combination, proved best suitable to normalize gene expression in ccRCC tissues as compared to classical reference genes such as beta-Actin, GAPDH, 18S or B2M. Using this pair as reference, YBX3 expression level among a collection of 16 ccRCC tumors was not significantly increased as compared to normal adjacent tissues. However, stratification according to Fuhrman grade disclosed higher YBX3 expression levels in low-grade tumors and lower in high-grade tumors. Immunoperoxidase confirmed homogeneous nuclear staining for YBX3 in low-grade but revealed nuclear heterogeneity in high-grade tumors.
This paper underlines that special attention to reference gene products in the design of real-time PCR analysis of tumoral tissue is crucial to avoid misleading conclusions.
Furthermore, we found that global YBX3/ZONAB/CSDA mRNA expression level may be considered within a “signature” of RCC grading.
PMCID: PMC4045873  PMID: 24885929
8.  A novel, non-radioactive eukaryotic in vitro transcription assay for sensitive quantification of RNA polymerase II activity 
Many studies of the eukaryotic transcription mechanism and its regulation rely on in vitro assays. Conventional RNA polymerase II transcription assays are based on radioactive labelling of the newly synthesized RNA. Due to the inefficient in vitro transcription, the detection of the RNA involving purification and gel electrophoresis is laborious and not always quantitative.
Herein, we describe a new, non-radioactive, robust and reproducible eukaryotic in vitro transcription assay that has been established in our laboratory. Upon transcription, the newly synthesized RNA is directly detected and quantified using the QuantiGene assay. Alternatively, the RNA can be purified and a primer extension followed by PCR detection or qPCR quantification can be performed. When applied to assess the activity of RNA polymerase II inhibitors, this new method allowed an accurate estimation of their relative potency.
Our novel assay provides a non-radioactive alternative to a standard in vitro transcription assay that allows for sensitive detection and precise quantification of the newly transcribed, unlabelled RNA and is particularly useful for quantification of strong transcriptional inhibitors like α-amanitin. Moreover, the method can be easily adapted to quantify the reaction yield and the transcription efficiency of other eukaryotic in vitro systems, thus providing a complementary tool for the field of transcriptional research.
PMCID: PMC4021065  PMID: 24694320
9.  Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing 
Double Stranded Breaks (DSBs) are the most serious form of DNA damage and are repaired via homologous recombination repair (HRR) or non-homologous end joining (NHEJ). NHEJ predominates in mammalian cells at most stages of the cell cycle, and it is viewed as ‘error-prone’, although this notion has not been sufficiently challenged due to shortcomings of many current systems. Multi-copy episomes provide a large pool of genetic material where repair can be studied, as repaired plasmids can be back-cloned into bacteria and characterized for sequence alterations. Here, we used EBV-based episomes carrying 3 resistance marker genes in repair studies where a single DSB is generated with virally-encoded HO endonuclease cleaving rapidly at high efficiency for a brief time post-infection. We employed PCR and Southern blot to follow the kinetics of repair and formation of processing intermediates, and replica plating to screen for plasmids with altered joints resulting in loss of chloramphenicol resistance. Further, we employed this system to study the role of Metnase. Metnase is only found in humans and primates and is a key component of the NHEJ pathway, but its function is not fully characterized in intact cells.
We found that repair of episomes by end-joining was highly accurate in 293 T cells that lack Metnase. Less than 10% of the rescued plasmids showed deletions. Instead, HEK293 cells (that do express Metnase) or 293 T transfected with Metnase revealed a large number of rescued plasmids with altered repaired joint, typically in the form of large deletions. Moreover, quantitative PCR and Southern blotting revealed less accurately repaired plasmids in Metnase expressing cells.
Our careful re-examination of fidelity of NHEJ repair in mammalian cells carrying a 3′ cohesive overhang at the ends revealed that the repair is efficient and highly accurate, and predominant over HRR. However, the background of the cells is important in establishing accuracy; with human cells perhaps surprisingly much more prone to generate deletions at the repaired junctions, if/when Metnase is abundantly expressed.
PMCID: PMC3998112  PMID: 24655462
Accuracy of DSB repair in mammalian cells; Episomal model of NHEJ; End- processing and re-ligation; Metnase nuclease; Joint accuracy
10.  Inverted terminal repeats of adeno-associated virus decrease random integration of a gene targeting fragment in Saccharomyces cerevisiae 
Homologous recombination mediated gene targeting is still too inefficient to be applied extensively in genomics and gene therapy. Although sequence-specific nucleases could greatly stimulate gene targeting efficiency, the off-target cleavage sites of these nucleases highlighted the risk of this strategy. Adeno-associated virus (AAV)-based vectors are used for specific gene knockouts, since several studies indicate that these vectors are able to induce site-specific genome alterations at high frequency. Since each targeted event is accompanied by at least ten random integration events, increasing our knowledge regarding the mechanisms behind these events is necessary in order to understand the potential of AAV-mediated gene targeting for therapy application. Moreover, the role of AAV regulatory proteins (Rep) and inverted terminal repeated sequences (ITRs) in random and homologous integration is not completely known. In this study, we used the yeast Saccharomyces cerevisiae as a genetic model system to evaluate whether the presence of ITRs in the integrating plasmid has an effect on gene targeting and random integration.
We have shown that the presence of ITRs flanking a gene targeting vector containing homology to its genomic target decreased the frequency of random integration, leading to an increase in the gene targeting/random integration ratio. On the other hand, the expression of Rep proteins, which produce a nick in the ITR, significantly increased non-homologous integration of a DNA fragment sharing no homology to the genome, but had no effect on gene targeting or random integration when the DNA fragment shared homology with the genome. Molecular analysis showed that ITRs are frequently conserved in the random integrants, and that they induce rearrangements.
Our results indicate that ITRs may be a useful tool for decreasing random integration, and consequently favor homologous gene targeting.
PMCID: PMC3925961  PMID: 24521444
Yeast; AAV; ITRs; Homologous recombination; Random integration
11.  Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors 
In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking.
We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element.
We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription.
PMCID: PMC3937059  PMID: 24499263
12.  Annual acknowledgement of reviewers 
Contributing reviewers
The editors of BMC Molecular Biology would like to thank all our reviewers who have contributed to the journal in Volume 14 (2013).
PMCID: PMC3902004
13.  Spdef deletion rescues the crypt cell proliferation defect in conditional Gata6 null mouse small intestine 
GATA transcription factors are essential for self-renewal of the small intestinal epithelium. Gata4 is expressed in the proximal 85% of small intestine while Gata6 is expressed throughout the length of small intestine. Deletion of intestinal Gata4 and Gata6 results in an altered proliferation/differentiation phenotype, and an up-regulation of SAM pointed domain containing ETS transcription factor (Spdef), a transcription factor recently shown to act as a tumor suppressor. The goal of this study is to determine to what extent SPDEF mediates the downstream functions of GATA4/GATA6 in the small intestine. The hypothesis to be tested is that intestinal GATA4/GATA6 functions through SPDEF by repressing Spdef gene expression. To test this hypothesis, we defined the functions most likely regulated by the overlapping GATA6/SPDEF target gene set in mouse intestine, delineated the relationship between GATA6 chromatin occupancy and Spdef gene regulation in Caco-2 cells, and determined the extent to which prevention of Spdef up-regulation by Spdef knockout rescues the GATA6 phenotype in conditional Gata6 knockout mouse ileum.
Using publicly available profiling data, we found that 83% of GATA6-regulated genes are also regulated by SPDEF, and that proliferation/cancer is the function most likely to be modulated by this overlapping gene set. In human Caco-2 cells, GATA6 knockdown results in an up-regulation of Spdef gene expression, modeling our mouse Gata6 knockout data. GATA6 occupies a genetic locus located 40 kb upstream of the Spdef transcription start site, consistent with direct regulation of Spdef gene expression by GATA6. Prevention of Spdef up-regulation in conditional Gata6 knockout mouse ileum by the additional deletion of Spdef rescued the crypt cell proliferation defect, but had little effect on altered lineage differentiation or absorptive enterocytes gene expression.
SPDEF is a key, immediate downstream effecter of the crypt cell proliferation function of GATA4/GATA6 in the small intestine.
PMCID: PMC3917371  PMID: 24472151
GATA6; SPDEF; Crypt cell proliferation; Intestinal differentiation
14.  MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells 
MicroRNAs (miRNAs) are a family of small, non-coding single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. As such, they are believed to play a role in regulating the step-wise changes in gene expression patterns that occur during cell fate specification of multipotent stem cells. Here, we have studied whether terminal differentiation of C2C12 myoblasts is indeed controlled by lineage-specific changes in miRNA expression.
Using a previously generated RNA polymerase II (Pol-II) ChIP-on-chip dataset, we show differential Pol-II occupancy at the promoter regions of six miRNAs during C2C12 myogenic versus BMP2-induced osteogenic differentiation. Overexpression of one of these miRNAs, miR-378, enhances Alp activity, calcium deposition and mRNA expression of osteogenic marker genes in the presence of BMP2.
Our results demonstrate a previously unknown role for miR-378 in promoting BMP2-induced osteogenic differentiation.
PMCID: PMC3905160  PMID: 24467925
15.  Dissecting domains necessary for activation and repression of splicing by muscleblind-like protein 1 
BMC Molecular Biology  2013;14:29.
Alternative splicing contributes to the diversity of the proteome, and provides the cell with an important additional layer of regulation of gene expression. Among the many RNA binding proteins that regulate alternative splicing pathways are the Muscleblind-like (MBNL) proteins. MBNL proteins bind YGCY motifs in RNA via four CCCH zinc fingers arranged in two tandem arrays, and play a crucial role in the transition from embryonic to adult muscle splicing patterns, deregulation of which leads to Myotonic Dystrophy. Like many other RNA binding proteins, MBNL proteins can act as both activators or repressors of different splicing events.
We used targeted point mutations to interfere with the RNA binding of MBNL1 zinc fingers individually and in combination. The effects of the mutations were tested in assays for splicing repression and activation, including overexpression, complementation of siRNA-mediated knockdown, and artificial tethering using MS2 coat protein. Mutations were tested in the context of both full length MBNL1 as well as a series of truncation mutants. Individual mutations within full length MBNL1 had little effect, but mutations in ZF1 and 2 combined were more detrimental than those in ZF 3 and 4, upon splicing activation, repression and RNA binding. Activation and repression both required linker sequences between ZF2 and 3, but activation was more sensitive to loss of linker sequences.
Our results highlight the importance of RNA binding by MBNL ZF domains 1 and 2 for splicing regulatory activity, even when the protein is artificially recruited to its regulatory location on target RNAs. However, RNA binding is not sufficient for activity; additional regions between ZF 2 and 3 are also essential. Activation and repression show differential sensitivity to truncation of this linker region, suggesting interactions with different sets of cofactors for the two types of activity.
PMCID: PMC3880588  PMID: 24373687
16.  Differential regulation of the rainbow trout (Oncorhynchus mykiss) MT-A gene by nuclear factor interleukin-6 and activator protein-1 
BMC Molecular Biology  2013;14:28.
Previously we have identified a distal region of the rainbow trout (Oncorhynchus mykiss) metallothionein-A (rtMT-A) enhancer region, being essential for free radical activation of the rtMT-A gene. The distal promoter region included four activator protein 1 (AP1) cis-acting elements and a single nuclear factor interleukin-6 (NF-IL6) element. In the present study we used the rainbow trout hepatoma (RTH-149) cell line to further examine the involvement of NF-IL6 and AP1 in rtMT-A gene expression following exposure to oxidative stress and tumour promotion.
Using enhancer deletion studies we observed strong paraquat (PQ)-induced rtMT-A activation via NF-IL6 while the AP1 cis-elements showed a weak but significant activation. In contrast to mammals the metal responsive elements were not activated by oxidative stress. Electrophoretic mobility shift assay (EMSA) mutation analysis revealed that the two most proximal AP1 elements, AP11,2, exhibited strong binding to the AP1 consensus sequence, while the more distal AP1 elements, AP13,4 were ineffective. Phorbol-12-myristate-13-acetate (PMA), a known tumor promoter, resulted in a robust induction of rtMT-A via the AP1 elements alone. To determine the conservation of regulatory functions we transfected human Hep G2 cells with the rtMT-A enhancer constructs and were able to demonstrate that the cis-elements were functionally conserved. The importance of NF-IL6 in regulation of teleost MT is supported by the conservation of these elements in MT genes from different teleosts. In addition, PMA and PQ injection of rainbow trout resulted in increased hepatic rtMT-A mRNA levels.
These studies suggest that AP1 primarily is involved in PMA regulation of the rtMT-A gene while NF-IL6 is involved in free radical regulation. Taken together this study demonstrates the functionality of the NF-IL6 and AP-1 elements and suggests an involvement of MT in protection during pathological processes such as inflammation and cancer.
PMCID: PMC3867414  PMID: 24341438
Rainbow trout; Metallothionein-A promoter; Nuclear factor interleukin-6; Activator protein-1; Oxidative stress
17.  An aryl hydrocarbon receptor induces VEGF expression through ATF4 under glucose deprivation in HepG2 
BMC Molecular Biology  2013;14:27.
Aryl hydrocarbon receptor (AhR) not only regulates drug-metabolizing enzyme expression but also regulates cancer malignancy. The steps to the development of malignancy include angiogenesis that is induced by tumor microenvironments, hypoxia, and nutrient deprivation. Vascular endothelial growth factor (VEGF) plays a central role in the angiogenesis of cancer cells, and it is induced by activating transcription factor 4 (ATF4).
Recently, we identified that glucose deprivation induces AhR translocation into the nucleus and increases CYP1A1 and 1A2 expression in HepG2 cells. Here, we report that the AhR pathway induces VEGF expression in human hepatoblastoma HepG2 cells under glucose deprivation, which involves ATF4. ATF4 knockdown suppressed VEGF expression under glucose deprivation. Moreover, AhR knockdown suppressed VEGF and ATF4 expression under glucose deprivation at genetic and protein levels.
The AhR-VEGF pathway through ATF4 is a novel pathway in glucose-deprived liver cancer cells that is related to the microenvironment within a cancer tissue affecting liver cancer malignancy.
PMCID: PMC3866938  PMID: 24330582
Aryl hydrocarbon receptor (AhR); Vascular endothelial growth factor (VEGF); Angiogenesis; Activating transcription factor 4 (ATF4); Human hepatocellular liver carcinoma cell
18.  Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries 
BMC Molecular Biology  2013;14:25.
Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions.
Through microarray analysis of exponential- and stationary-phase cultures with low and high domoic acid production, respectively, we identified candidate reference genes whose transcripts did not vary across conditions. We tested eleven potential reference genes for stability using RT-qPCR and GeNorm analyses. Our results indicated that transcripts encoding JmjC, dynein, and histone H3 proteins were the most suitable for normalization of expression data under conditions of silicon-limitation, in late-exponential through stationary phase. The microarray studies identified a number of genes that were up- and down-regulated under toxin-producing conditions. RT-qPCR analysis, using the validated controls, confirmed the up-regulation of transcripts predicted to encode a cycloisomerase, an SLC6 transporter, phosphoenolpyruvate carboxykinase, glutamate dehydrogenase, a small heat shock protein, and an aldo-keto reductase, as well as the down-regulation of a transcript encoding a fucoxanthin-chlorophyll a-c binding protein, under these conditions.
Our results provide a strong basis for further studies of RNA expression levels in Ps-n, which will contribute to our understanding of genes involved in the production and release of domoic acid, an important neurotoxin that affects human health as well as ecosystem function.
PMCID: PMC3832940  PMID: 24180290
Gene expression; Gene regulation; cDNA microarray; RT-qPCR; Normalization; Reference gene; Domoic acid; Pseudo-nitzschia multiseries; Bacillariophyceae; Diatom
19.  Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter 
BMC Molecular Biology  2013;14:24.
MicroRNA-155 (miR-155) is the diced product of the MIR155HG gene. miR-155 regulates the expression of many immune-specific transcripts, is overexpressed in many human lymphomas, and has oncogenic activity in mouse transgenic models. MIR155HG has been proposed to be a target gene for transcription factor NF-κB largely due to the positive correlation between high nuclear NF-κB activity and increased miR-155 expression following treatment with NF-κB inducers or in subsets of hematopoietic cancers. Nevertheless, direct regulation of the human MIR155HG promoter by NF-κB has not been convincingly demonstrated previously.
This report shows that induction of NF-κB activity rapidly leads to increased levels of both primary MIR155HG mRNA and mature miR-155 transcripts. We have mapped an NF-κB-responsive element to a position approximately 178 nt upstream of the MIR155HG transcription start site. The -178 site is specifically bound by the NF-κB p50/p65 heterodimer and is required for p65-induced reporter gene activation. Moreover, the levels of miR-155 in nine human B-lymphoma cell lines generally correlate with increased nuclear NF-κB proteins.
Overall, the identification of an NF-κB-responsive site in the MIR155HG proximal promoter suggests that MIR155HG is a direct NF-κB target gene in vivo. Understanding NF-κB-mediated regulation of miR-155 could lead to improved immune cell-related diagnostic tools and targeted therapies.
PMCID: PMC3849010  PMID: 24059932
miR-155; MIR155HG; BIC; NF-kappaB; Promoter; Transcriptional activation
20.  3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing 
BMC Molecular Biology  2013;14:23.
Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes.
The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR).
3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs.
PMCID: PMC3849073  PMID: 24053768
RNase MRP RNA; 3′ RACE deep sequencing; Oligo(U); Oligo(A); Telomerase RNA
21.  VprBP (DCAF1): a promiscuous substrate recognition subunit that incorporates into both RING-family CRL4 and HECT-family EDD/UBR5 E3 ubiquitin ligases 
BMC Molecular Biology  2013;14:22.
The terminal step in the ubiquitin modification system relies on an E3 ubiquitin ligase to facilitate transfer of ubiquitin to a protein substrate. The substrate recognition and ubiquitin transfer activities of the E3 ligase may be mediated by a single polypeptide or may rely on separate subunits. The latter organization is particularly prevalent among members of largest class of E3 ligases, the RING family, although examples of this type of arrangement have also been reported among members of the smaller HECT family of E3 ligases. This review describes recent discoveries that reveal the surprising and distinctive ability of VprBP (DCAF1) to serve as a substrate recognition subunit for a member of both major classes of E3 ligase, the RING-type CRL4 ligase and the HECT-type EDD/UBR5 ligase. The cellular processes normally regulated by VprBP-associated E3 ligases, and their targeting and subversion by viral accessory proteins are also discussed. Taken together, these studies provide important insights and raise interesting new questions regarding the mechanisms that regulate or subvert VprBP function in the context of both the CRL4 and EDD/UBR5 E3 ligases.
PMCID: PMC3847654  PMID: 24028781
VprBP; DCAF1; DDB1; Cul4; CRL4; EDD; UBR5; Dyrk2; Merlin; Katanin; UNG2; LGL2; Mcm10; Histone H3; RORα; Methyl degron; p53; TERT; telomerase; RAG1; V(D)J recombination; HIV; Vpr; Vpx; UL35; Ubiquitin; E3 ubiquitin ligase; RING; HECT; WD40 repeat
22.  Reference loci for RT-qPCR analysis of differentiating human embryonic stem cells 
BMC Molecular Biology  2013;14:21.
Selecting stably expressed reference genes is essential for proper reverse transcription quantitative polymerase chain reaction gene expression analysis. However, this choice is not always straightforward. In the case of differentiating human embryonic stem (hES) cells, differentiation itself introduces changes whereby reference gene stability may be influenced.
In this study, we evaluated the stability of various references during retinoic acid-induced (2 microM) differentiation of hES cells. Out of 12 candidate references, beta-2-microglobulin, ribosomal protein L13A and Alu repeats are found to be the most stable for this experimental set-up.
Our results show that some of the commonly used reference genes are actually not amongst the most stable loci during hES cell differentiation promoted by retinoic acid. Moreover, a novel normalization strategy based on expressed Alu repeats is validated for use in hES cell experiments.
PMCID: PMC3848990  PMID: 24028740
Reverse transcription quantitative PCR; Normalization; Reference genes; Alu repeats; Human embryonic stem cells; Stem cell differentiation
23.  Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by streptomyces phage phiC31 integrase 
BMC Molecular Biology  2013;14:20.
Phage PhiC31 integrase integrates attB-containing plasmid into pseudo attP site in eukaryotic genomes in a unidirectional site-specific manner and maintains robust transgene expression. Few studies, however, explore its potential in livestock. This study aims to discover the molecular basis of PhiC31 integrase-mediated site-specific recombination in pig cells. We show that PhiC31 integrase can mediate site-specific transgene integration into the genome of pig kidney PK15 cells. Intramolecular recombination in pig PK15 cell line occurred at maximum frequency of 82% with transiently transfected attB- and attP-containing plasmids. An optimal molar ratio of pCMV-Int to pEGFP-N1-attB at 5:1 was observed for maximum number of cell clones under drug selection. Four candidate pseudo attP sites were identified by TAIL-PCR from those cell clones with single-copy transgene integration. Two of them gave rise to higher integration frequency occurred at 33%. 5′ and 3′ junction PCR showed that transgene integration mediated by PhiC31 integrase was mono-allelic. Micro- deletion and insertion were observed by sequencing the integration border, indicating that double strand break was induced by the recombination. We then constructed rescue reporter plasmids by ABI-REC cloning of the four pseudo attP sites into pBCPB + plasmid. Transfection of these rescue plasmids and pCMV-Int resulted in expected intramolecular recombination between attB and pseudo attP sites. This proved that the endogenous pseudo attP sites were functional substrates for PhiC31 integrase-mediated site-specific recombination. Two pseudo attP sites maintained robust extracellular and intracellular EGFP expression. Alamar blue assay showed that transgene integration into these specific sites had little effect on cell proliferation. This is the first report to document the potential use of PhiC31 integrase to mediate site-specific recombination in pig cells. Our work established an ideal model to study the position effect of identical transgene located in diverse chromosomal contexts. These findings also form the basis for targeted pig genome engineering and may be used to produce genetically modified pigs for agricultural and biomedical uses.
PMCID: PMC3844521  PMID: 24010979
PhiC31 integrase; Pig; Pseudo attP site; TAIL-PCR
24.  Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera 
BMC Molecular Biology  2013;14:19.
Ecdysteroid hormones ecdysone and 20-hydroxyecdysone play fundamental roles in insect postembryonic development and reproduction. Five cytochrome P450 monooxygenases (CYPs), encoded by Halloween genes, have been documented to be involved in the ecdysteroidogenesis in insect species of diverse orders such as Diptera, Lepidoptera and Orthoptera. Up to now, however, the involvement of the Halloween genes in ecdysteroid synthesis has not been confirmed in hemipteran insect species.
In the present paper, a Halloween gene spook (Sfspo, Sfcyp307a1) was cloned in the hemipteran Sogatella furcifera. SfSPO has three insect conserved P450 motifs, i.e., Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of Sfspo were evaluated by qPCR. Sfspo showed three expression peaks in late second-, third- and fourth-instar stages. In contrast, the expression levels were lower and formed three troughs in the newly-molted second-, third- and fourth-instar nymphs. On day 3 of the fourth-instar nymphs, Sfspo clearly had a high transcript level in the thorax where PGs were located. Dietary introduction of double-stranded RNA (dsRNA) of Sfspo into the second instars successfully knocked down the target gene, and greatly reduced expression level of ecdysone receptor (EcR) gene. Moreover, knockdown of Sfspo caused lethality and delayed development during nymphal stages. Furthermore, application of 20-hydroxyecdysone on Sfspo-dsRNA-exposed nymphs did not increase Sfspo expression, but could almost completely rescue SfEcR expression, and relieved the negative effects on nymphal survival and development.
In S. furcifera, Sfspo was cloned and the conservation of SfSPO is valid. Thus, SfSPO is probably also involved in ecdysteroidogenesis for hemiptera.
PMCID: PMC3766648  PMID: 24007644
Sogatella furcifera; Halloween gene; Ecdysteroidogenesis; RNA interference; Lethality; Development
25.  A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector 
BMC Molecular Biology  2013;14:18.
Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous.
We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells.
We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.
PMCID: PMC3765358  PMID: 23957834
Gateway cloning; Fusion protein; Combinatorial; Fluorescent protein; Epitope tag

Results 1-25 (714)