PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
author:("Wang, danxi")
1.  Erlotinib in African Americans with Advanced Non-Small Cell Lung Cancer: A Prospective Randomized Study with Genetic and Pharmacokinetic Analysis 
Prospective studies focusing on EGFR inhibitors in African Americans with NSCLC have not been previously performed. In this phase II randomized study, 55 African Americans with NSCLC received erlotinib 150mg/day or a body weight adjusted dose with subsequent escalations to the maximum allowable, 200mg/day, to achieve rash. Erlotinib and OSI-420 exposures were lower compared to previous reports, consistent with CYP3A pharmacogenetics implying higher metabolic activity. Tumor genetics revealed only two EGFR mutations, EGFR amplification in 17/47 samples, 8 KRAS mutations and 5 EML4-ALK translocations. Although absence of rash was associated with shorter time to progression (TTP), disease control rate, TTP, and 1-year survival were not different between the two dose groups, indicating the dose-to-rash strategy failed to increase clinical benefit. Observed low incidence of toxicity and low erlotinib exposure suggest standardized and maximum allowable dosing may be suboptimal in African Americans.
doi:10.1038/clpt.2014.93
PMCID: PMC4180036  PMID: 24781527
EGFR; Erlotinib; African American; Pharmacokinetics; Pharmacogenetics
2.  Analyzing allele specific RNA expression using mixture models 
BMC Genomics  2015;16(1):566.
Background
Measuring allele-specific RNA expression provides valuable insights into cis-acting genetic and epigenetic regulation of gene expression. Widespread adoption of high-throughput sequencing technologies for studying RNA expression (RNA-Seq) permits measurement of allelic RNA expression imbalance (AEI) at heterozygous single nucleotide polymorphisms (SNPs) across the entire transcriptome, and this approach has become especially popular with the emergence of large databases, such as GTEx. However, the existing binomial-type methods used to model allelic expression from RNA-seq assume a strong negative correlation between reference and variant allele reads, which may not be reasonable biologically.
Results
Here we propose a new strategy for AEI analysis using RNA-seq data. Under the null hypothesis of no AEI, a group of SNPs (possibly across multiple genes) is considered comparable if their respective total sums of the allelic reads are of similar magnitude. Within each group of “comparable” SNPs, we identify SNPs with AEI signal by fitting a mixture of folded Skellam distributions to the absolute values of read differences. By applying this methodology to RNA-Seq data from human autopsy brain tissues, we identified numerous instances of moderate to strong imbalanced allelic RNA expression at heterozygous SNPs. Findings with SLC1A3 mRNA exhibiting known expression differences are discussed as examples.
Conclusion
The folded Skellam mixture model searches for SNPs with significant difference between reference and variant allele reads (adjusted for different library sizes), using information from a group of “comparable” SNPs across multiple genes. This model is particularly suitable for performing AEI analysis on genes with few heterozygous SNPs available from RNA-seq, and it can fit over-dispersed read counts without specifying the direction of the correlation between reference and variant alleles.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1749-0) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-015-1749-0
PMCID: PMC4521363  PMID: 26231172
Allelic RNA expression imbalance (AEI); Allele-specific expression (ASE); RNA-seq; Poisson mixture; Folded Skellam mixture; Human brain
3.  Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing 
Tacrolimus is the mainstay immunosuppressant drug used after solid organ and hematopoietic stem cell transplantation. Individuals who express CYP3A5 (extensive and intermediate metabolizers) generally have decreased dose-adjusted trough concentrations of tacrolimus as compared to those who are CYP3A5 non-expressers (poor metabolizers), possibly delaying achievement of target blood concentrations. We summarize evidence from the published literature supporting this association and provide dosing recommendations for tacrolimus based on CYP3A5 genotype when known (updates at www.pharmgkb.org).
doi:10.1002/cpt.113
PMCID: PMC4481158  PMID: 25801146
Tacrolimus; CYP3A5; immunosuppressant; pharmacogenetics; pharmacogenomics; transplant
4.  Conditional entropy in variation-adjusted windows detects selection signatures associated with expression quantitative trait loci (eQTLs) 
BMC Genomics  2015;16(Suppl 8):S8.
Background
Over the past 50,000 years, shifts in human-environmental or human-human interactions shaped genetic differences within and among human populations, including variants under positive selection. Shaped by environmental factors, such variants influence the genetics of modern health, disease, and treatment outcome. Because evolutionary processes tend to act on gene regulation, we test whether regulatory variants are under positive selection. We introduce a new approach to enhance detection of genetic markers undergoing positive selection, using conditional entropy to capture recent local selection signals. Results We use conditional logistic regression to compare our Adjusted Haplotype Conditional Entropy (H|H) measure of positive selection to existing positive selection measures. H|H and existing measures were applied to published regulatory variants acting in cis (cis-eQTLs), with conditional logistic regression testing whether regulatory variants undergo stronger positive selection than the surrounding gene.
These cis-eQTLs were drawn from six independent studies of genotype and RNA expression. The conditional logistic regression shows that, overall, H|H is substantially more powerful than existing positive-selection methods in identifying cis-eQTLs against other Single Nucleotide Polymorphisms (SNPs) in the same genes. When broken down by Gene Ontology, H|H predictions are particularly strong in some biological process categories, where regulatory variants are under strong positive selection compared to the bulk of the gene, distinct from those GO categories under overall positive selection. . However, cis-eQTLs in a second group of genes lack positive selection signatures detectable by H|H, consistent with ancient short haplotypes compared to the surrounding gene (for example, in innate immunity GO:0042742); under such other modes of selection, H|H would not be expected to be a strong predictor.. These conditional logistic regression models are adjusted for Minor allele frequency(MAF); otherwise, ascertainment bias is a huge factor in all eQTL data sets. Relationships between Gene Ontology categories, positive selection and eQTL specificity were replicated with H|H in a single larger data set. Our measure, Adjusted Haplotype Conditional Entropy (H|H), was essential in generating all of the results above because it: 1) is a stronger overall predictor for eQTLs than comparable existing approaches, and 2) shows low sequential auto-correlation, overcoming problems with convergence of these conditional regression statistical models.
Conclusions
Our new method, H|H, provides a consistently more robust signal associated with cis-eQTLs compared to existing methods. We interpret this to indicate that some cis-eQTLs are under positive selection compared to their surrounding genes. Conditional entropy indicative of a selective sweep is an especially strong predictor of eQTLs for genes in several biological processes of medical interest. Where conditional entropy is a weak or negative predictor of eQTLs, such as innate immune genes, this would be consistent with balancing selection acting on such eQTLs over long time periods. Different measures of selection may be needed for variant prioritization under other modes of evolutionary selection.
doi:10.1186/1471-2164-16-S8-S8
PMCID: PMC4480832  PMID: 26111110
Haplotype; Positive Selection; Selective Sweep; Conditional Entropy; eQTL; Conditional Logistic Regression
5.  Quantifying rare, deleterious variation in 12 human cytochrome P450 drug-metabolism genes in a large-scale exome dataset 
Human Molecular Genetics  2013;23(8):1957-1963.
The study of genetic influences on drug response and efficacy (‘pharmacogenetics’) has existed for over 50 years. Yet, we still lack a complete picture of how genetic variation, both common and rare, affects each individual's responses to medications. Exome sequencing is a promising alternative method for pharmacogenetic discovery as it provides information on both common and rare variation in large numbers of individuals. Using exome data from 2203 AA and 4300 Caucasian individuals through the NHLBI Exome Sequencing Project, we conducted a survey of coding variation within 12 Cytochrome P450 (CYP) genes that are collectively responsible for catalyzing nearly 75% of all known Phase I drug oxidation reactions. In addition to identifying many polymorphisms with known pharmacogenetic effects, we discovered over 730 novel nonsynonymous alleles across the 12 CYP genes of interest. These alleles include many with diverse functional effects such as premature stop codons, aberrant splicesites and mutations at conserved active site residues. Our analysis considering both novel, predicted functional alleles as well as known, actionable CYP alleles reveals that rare, deleterious variation contributes markedly to the overall burden of pharmacogenetic alleles within the populations considered, and that the contribution of rare variation to this burden is over three times greater in AA individuals as compared with Caucasians. While most of these impactful alleles are individually rare, 7.6–11.7% of individuals interrogated in the study carry at least one newly described potentially deleterious alleles in a major drug-metabolizing CYP.
doi:10.1093/hmg/ddt588
PMCID: PMC3959810  PMID: 24282029
6.  Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity 
Human Molecular Genetics  2013;23(1):268-278.
Cytochrome P450 2D6 (CYP2D6) is involved in the metabolism of 25% of clinically used drugs. Genetic polymorphisms cause substantial variation in CYP2D6 activity and serve as biomarkers guiding drug therapy. However, genotype–phenotype relationships remain ambiguous except for poor metabolizers carrying null alleles, suggesting the presence of yet unknown genetic variants. Searching for regulatory CYP2D6 polymorphisms, we find that a SNP defining the CYP2D6*2 allele, rs16947 [R296C, 17–60% minor allele frequency (MAF)], previously thought to convey normal activity, alters exon 6 splicing, thereby reducing CYP2D6 expression at least 2-fold. In addition, two completely linked SNPs (rs5758550/rs133333, MAF 13–42%) increase CYP2D6 transcription more than 2-fold, located in a distant downstream enhancer region (>100 kb) that interacts with the CYP2D6 promoter. In high linkage disequilibrium (LD) with each other, rs16947 and the enhancer SNPs form haplotypes that affect CYP2D6 enzyme activity in vivo. In a pediatric cohort of 164 individuals, rs16947 alone (minor haplotype frequency 28%) was associated with reduced CYP2D6 metabolic activity (measured as dextromethorphan/metabolite ratios), whereas rs5758550/rs133333 alone (frequency 3%) resulted in increased CYP2D6 activity, while haplotypes containing both rs16947 and rs5758550/rs133333 were similar to the wild-type. Other alleles used in biomarker panels carrying these variants such as CYP2D6*41 require re-evaluation of independent effects on CYP2D6 activity. The occurrence of two regulatory variants of high frequency and in high LD, residing on a long haplotype, highlights the importance of gene architecture, likely shaped by evolutionary selection pressures, in determining activity of encoded proteins.
doi:10.1093/hmg/ddt417
PMCID: PMC3857955  PMID: 23985325
7.  The Making of a CYP3A Biomarker Panel for Guiding Drug Therapy 
Journal of personalized medicine  2012;2(4):175-191.
CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed.
doi:10.3390/jpm2040175
PMCID: PMC3901424  PMID: 24466438
cytochrome P450s; CYP3A4; polymorphism; biomarker
8.  Regulatory polymorphisms in CYP2C19 affecting hepatic expression 
Background
Cytochrome P450 2C19 is responsible for the metabolism of many drugs, including the activation of clopidogrel. The allele CYP2C19*17 is associated with ultra-rapid metabolizer phenotypes by increasing gene transcription. This study tests to what extent CYP2C19*17 enhances CYP2C19 expression in human liver and whether additional regulatory variants contribute to variation in CYP2C19 expression.
Methods
CYP2C19 mRNA was measured with quantitative real-time PCR (qRT-PCR), enzyme activity as metabolic velocity with S-mephenytoin as the substrate and allelic mRNA expression ratio with SNaPshot in human livers. CYP2C19 transcribed exons and a 4kb promoter region were sequenced using IonTorrent PGM or Sanger sequencing and screened for polymorphisms associated with total hepatic CYP2C19 mRNA, enzyme activity and allelic mRNA ratios.
Results
Livers heterozygote and homozygous for CYP2C19*17 had mRNA levels 1.8-fold (p=0.028) and 2.9- fold (p=0.006), respectively, above homozygous reference allele livers. CYP2C19*17 heterozygotes were also associated with increased allelic mRNA expression (allelic ratio ~1.8-fold, SD±0.6, p<0.005), whereas CYP2C19 enzyme activity was elevated 2.3-fold, with borderline significance (p=0.06) in CYP2C19*17 carriers. One liver sample of African ancestry displayed a 2-fold allelic expression ratio, and another sample, a ~12-fold increase in metabolic velocity. Neither case was accounted for by *17, which indicates the presence of additional regulatory variants.
Conclusions
Our findings confirm *17 as a regulatory polymorphism enhancing hepatic CYP2C19 expression 2-fold with potential to compensate for the loss of function allele CYP2C19*2. Additional regulatory factors may also enhance CYP2C19 expression in African American populations.
doi:10.1515/dmdi-2012-0038
PMCID: PMC3755489  PMID: 23412869
CYP2C19; clopidogrel; allelic expression imbalance; polymorphism; biomarker; cytochrome P450
9.  Polymorphisms of the SAMHD1 Gene Are Not Associated with the Infection and Natural Control of HIV Type 1 in Europeans and African-Americans 
AIDS Research and Human Retroviruses  2012;28(12):1565-1573.
Abstract
The HIV-1 restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1) blocks HIV-1 infection in human myeloid cells. Mutations in the SAMHD1 gene are associated with rare genetic diseases including Aicardi–Goutieres syndrome. However, it is unknown whether polymorphisms of SAMHD1 are associated with infection and natural control of HIV-1 in humans. Our objective was to determine whether the expression of SAMHD1 mRNA is affected by common single nucleotide polymorphisms (SNPs) in SAMHD1 and whether the SNPs are associated with HIV-1 infection status. Using a tagging SNP approach, we determined the association between eight tagging SNPs in SAMHD1 and the mRNA expression in B-lymphocyte cell lines from 70 healthy white donors. We identified one SNP (rs1291142) that was significantly associated with SAMHD1 mRNA expression, with minor allele carriers having 30% less mRNA levels (p=0.015). However, after analyzing the published genome-wide association study data of 857 HIV-1 controllers and 2088 HIV-1 progressors from the European and African-American cohorts, we did not find a significant association between SNPs in SAMHD1 and HIV-1 infection status, including SNP rs1291142 (p>0.05). We also observed 2- to 6-fold variations of SAMHD1 mRNA levels in primary B-lymphocytes, CD4+ T-lymphocytes, and CD14+ monocytes from five healthy donors. Our results suggest that common regulatory polymorphism(s) exist in the SAMHD1 gene that affects its mRNA expression in B-lymphocyte cell lines from healthy whites. However, polymorphisms of SAMHD1 are unlikely to contribute to the infection and natural control of HIV-1 in European and African-American individuals.
doi:10.1089/aid.2012.0039
PMCID: PMC3505062  PMID: 22530776
10.  CYP3A4/5 combined genotype analysis for predicting statin dose requirement for optimal lipid control 
Background
Statins are indicated for prevention of atherosclerotic cardiovascular disease. Metabolism of certain statins involves the cytochrome P450 3A (CYP3A) enzymes, and CYP3A4*22 significantly influences the dose needed for achieving optimal lipid control for atorva statin, simvastatin, and lovastatin. CYP3A4/5 combined genotype approaches have proved useful in some studies involving CYP3A substrates. We intend to compare a combined genotype analysis to our previously reported single gene CYP3A4 analysis.
Methods
A total of 235 patients receiving stable statin doses were genotyped and grouped by CYP3A4/5 status.
Results
The number and demographic composition of the patients categorized into the combined genotype groups were consistent with those reported for other cohorts. Dose requirement was significantly associated with the ordered combined-genotype grouping; median daily doses were nearly 40% greater for CYP3A4/5 intermediate metabolizers compared with poor metabolizers, and median daily doses were nearly double for extensive metabolizers compared with poor metabolizers. The combined-genotype approach, however, did not improve the genotype-dosage correlation p-values when compared with the previously-reported analysis; values changed from 0.129 to 0.166, 0.036 to 0.185, and 0.014 to 0.044 for atorvastatin, simvastatin, and the combined statin analysis, respectively.
Conclusions
The previously-reported single-gene approach was superior for predicting statin dose requirement in this cohort.
doi:10.1515/dmdi-2012-0031
PMCID: PMC3681953  PMID: 23314529
CYP3A4/5 combined genotype; gene-gene interaction; pharmacogenomics; statin
11.  CYP2C9 promoter region single-nucleotide polymorphisms linked to the R150H polymorphism are functional suggesting their role in CYP2C9*8-mediated effects 
Pharmacogenetics and genomics  2013;23(4):228-231.
Cytochrome P450 2C9 (CYP2C9) c.449G> A (*8) is common in African Americans and is associated with decreased warfarin clearance. We examined the effect of promoter region variants inherited with 449G > A on warfarin clearance, dose requirements, and CYP2C9 expression. In an African American cohort, 449G > A was in linkage disequilibrium with c. – 1766T >C (r2 = 0.89) and c. – 1188T>C (D′ =1). The combination of the – 1766C and 449A alleles with the – 1188CC genotype was associated with lower S-warfarin clearance (0.86±0.22 vs. 1.66±0.75 ml/min/m2; n=48; P <0.01) and dose requirements [33 (25–49) vs. 43 (35–56) mg/week; n= 243; P= 0.03] compared with other genotypes. In liver tissue, alleles with the – 1766C/ – 1188C/449A haplotype showed two-fold decreased mRNA expression compared with reference alleles. In a promoter reporter assay, the – 1766C/ – 1188C haplotype decreased CYP2C9 promoter activity. These data suggest that promoter region polymorphisms inherited with 449G >A decrease CYP2C9 expression and contribute to CYP2C9*8 effects on warfarin clearance and dose requirements.
doi:10.1097/FPC.0b013e32835e95c7
PMCID: PMC3629689  PMID: 23376925
African American; CYP2C9*8; genotype; polymorphism; warfarin
12.  The Making of a CYP3A Biomarker Panel for Guiding Drug Therapy  
Journal of Personalized Medicine  2012;2(4):175-191.
CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed.
doi:10.3390/jpm2040175
PMCID: PMC3901424  PMID: 24466438
cytochrome P450s; CYP3A4; polymorphism; biomarker
13.  Human N-acetyltransferase 1 (NAT1) *10 and *11 alleles increase protein expression via distinct mechanisms and associate with sulfamethoxazole-induced hypersensitivity 
Pharmacogenetics and genomics  2011;21(10):652-664.
Objectives
N-acetyltransferase 1 (NAT1) metabolizes drugs and environmental carcinogens. NAT1 alleles *10 and *11 have been proposed to alter protein level or enzyme activity compared to wild-type NAT1 *4 and to confer cancer risk, via uncertain pathways. This study characterizes regulatory polymorphisms and underlying mechanisms of NAT1 expression.
Methods
We measured allelic NAT1 mRNA expression and translation, as a function of multiple transcription start sites, alternative splicing, and three 3′-polyadenylation sites in human livers (one of which discovered in this study), B lymphocytes, and transfected cells. In a clinical study of 469 HIV/AIDS patients treated with the NAT1/NAT2 substrate sulfamethoxazole (SMX), associations were tested between SMX induced hypersensitivity and NAT1 *10 and *11 genotypes, together with known NAT2 polymorphisms.
Results
NAT1*10 and *11 were determined to act as common regulatory alleles accounting for most NAT1 expression variability, both leading to increased translation into active protein. NAT1*11 (2.4% minor allele frequency) affected 3′polyadenylation site usage, thereby increasing formation of NAT1 mRNA with intermediate length 3′UTR (major isoform) at the expense of the short isoform, resulting in more efficient protein translation. NAT1 *10 (19% minor allele frequency) increased translation efficiency without affecting 3′-UTR polyadenylation site usage. Livers and B-lymphocytes with *11/*4 and *10/*10 genotypes displayed higher NAT1 immunoreactivity and NAT1 enzyme activity than the reference genotype *4/*4. Patients who carry *10/*10 and *11/*4 (‘fast NAT1 acetylators’) were less likely to develop hypersensitivity to SMX, but this was observed only in subjects also carrying a slow NAT2 acetylator genotype.
Conclusion
NAT1 *10 and *11 significantly increase NAT1 protein level/enzyme activity, enabling the classification of carriers into reference and rapid acetylators. Rapid NAT1 acetylator status appears to protect against SMX toxicity by compensating for slow NAT2 acetylator status.
doi:10.1097/FPC.0b013e3283498ee9
PMCID: PMC3172334  PMID: 21878835
N-acetyltransferase; NAT1; polyadenylation; allelic expression imbalance; sulfamethoxazole; cotrimoxazole; protein translation; acetylator phenotype; idiosyncratic drug reactions
14.  Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients 
BMC Medical Genomics  2012;5:32.
Background
Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity.
Results
Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142 T > G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients (p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds ratio = 3.3, 95% CL 1.6 – 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold (95% CL 1.4 – 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142 homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p < 0.05).
Conclusions
rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may play a broad role in idiosyncratic drug reactions.
doi:10.1186/1755-8794-5-32
PMCID: PMC3418550  PMID: 22824134
Idiosyncratic drug reaction; Sulfamethoxazole; Hypersensitivity; Glutamate cysteine ligase catalytic subunit (GCLC); Association; HIV/AIDS
15.  Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk 
PLoS ONE  2012;7(3):e31930.
Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5–7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4×10−5, allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8×10−10) and intron 8 polymorphism rs9930761-T>C (5.6×10−8) (in high linkage disequilibrium with allele frequencies 6–7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.
The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6×10−28 and rs5883 p = 8.6×10−10, adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29–4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.
doi:10.1371/journal.pone.0031930
PMCID: PMC3293889  PMID: 22403620
16.  Intronic Polymorphisms Affecting Alternative Splicing of Human Dopamine D2 Receptor Are Associated with Cocaine Abuse 
Neuropsychopharmacology  2010;36(4):753-762.
The dopamine receptor D2 (encoded by DRD2) is implicated in susceptibility to mental disorders and cocaine abuse, but mechanisms responsible for this relationship remain uncertain. DRD2 mRNA exists in two main splice isoforms with distinct functions: D2 long (D2L) and D2 short (D2S, lacking exon 6), expressed mainly postsynaptically and presynaptically, respectively. Two intronic single-nucleotide polymorphisms (SNPs rs2283265 (intron 5) and rs1076560 (intron 6)) in high linkage disequilibrium (LD) with each other have been reported to alter D2S/D2L splicing and several behavioral traits in human subjects, such as memory processing. To assess the role of DRD2 variants in cocaine abuse, we measured levels of D2S and D2L mRNA in human brain autopsy tissues (prefrontal cortex and putamen) obtained from cocaine abusers and controls, and genotyped a panel of DRD2 SNPs (119 abusers and 95 controls). Robust effects of rs2283265 and rs1076560 on reducing formation of D2S relative to D2L were confirmed. The minor alleles of rs2283265/rs1076560 were considerably more frequent in Caucasians (18%) compared with African Americans (7%). Also, in Caucasians, rs2283265/rs1076560 minor alleles were significantly overrepresented in cocaine abusers compared with controls (rs2283265: 25 to 9%, respectively; p=0.001; OR=3.4 (1.7–7.1)). Several SNPs previously implicated in diverse clinical association studies are in high LD with rs2283265/rs1076560 and could have served as surrogate markers. Our results confirm the role of rs2283265/rs1076560 in D2 alternative splicing and support a strong role in susceptibility to cocaine abuse.
doi:10.1038/npp.2010.208
PMCID: PMC3055737  PMID: 21150907
alternative splicing; cocaine; dopamine; DRD2; D2S; human; addiction and substance abuse; dopamine; neurogenetics; psychostimulants; drd2; d2s; human; alternative splicing; cocaine
17.  Nicotinic α5 receptor subunit mRNA expression is associated with distant 5′ upstream polymorphisms 
CHRNA5, encoding the nicotinic α5 subunit, is implicated in multiple disorders, including nicotine addiction and lung cancer. Previous studies demonstrate significant associations between promoter polymorphisms and CHRNA5 mRNA expression, but the responsible sequence variants remain uncertain. To search for cis-regulatory variants, we measured allele-specific mRNA expression of CHRNA5 in human prefrontal cortex autopsy tissues and scanned the CHRNA5 locus for regulatory variants. A cluster of six frequent single nucleotide polymorphisms (rs1979905, rs1979906, rs1979907, rs880395, rs905740, and rs7164030), in complete linkage disequilibrium, fully account for a >2.5-fold allelic expression difference and a fourfold increase in overall CHRNA5 mRNA expression. This proposed enhancer region resides more than 13 kilobases upstream of the CHRNA5 transcription start site. The same upstream variants failed to affect CHRNA5 mRNA expression in peripheral blood lymphocytes, indicating tissue-specific gene regulation. Other promoter polymorphisms were also correlated with overall CHRNA5 mRNA expression in the brain, but were inconsistent with allelic mRNA expression ratios, a robust and proximate measure of cis-regulatory variants. The enhancer region and the nonsynonymous polymorphism rs16969968 generate three main haplotypes that alter the risk of developing nicotine dependence. Ethnic differences in linkage disequilibrium across the CHRNA5 locus require consideration of the upstream enhancer variants when testing clinical associations.
doi:10.1038/ejhg.2010.120
PMCID: PMC2995013  PMID: 20700147
Nicotinic receptor; alpha5 subunit; gene expression; nicotine dependence; lung cancer; enhancer
18.  Nicotinic α5 receptor subunit mRNA expression is associated with distant 5′ upstream polymorphisms 
CHRNA5, encoding the nicotinic α5 subunit, is implicated in multiple disorders, including nicotine addiction and lung cancer. Previous studies demonstrate significant associations between promoter polymorphisms and CHRNA5 mRNA expression, but the responsible sequence variants remain uncertain. To search for cis-regulatory variants, we measured allele-specific mRNA expression of CHRNA5 in human prefrontal cortex autopsy tissues and scanned the CHRNA5 locus for regulatory variants. A cluster of six frequent single-nucleotide polymorphisms (rs1979905, rs1979906, rs1979907, rs880395, rs905740, and rs7164030), in complete linkage disequilibrium (LD), fully account for a >2.5-fold allelic expression difference and a fourfold increase in overall CHRNA5 mRNA expression. This proposed enhancer region resides more than 13 kilobases upstream of the CHRNA5 transcription start site. The same upstream variants failed to affect CHRNA5 mRNA expression in peripheral blood lymphocytes, indicating tissue-specific gene regulation. Other promoter polymorphisms were also correlated with overall CHRNA5 mRNA expression in the brain, but were inconsistent with allelic mRNA expression ratios, a robust and proximate measure of cis-regulatory variants. The enhancer region and the nonsynonymous polymorphism rs16969968 generate three main haplotypes that alter the risk of developing nicotine dependence. Ethnic differences in LD across the CHRNA5 locus require consideration of upstream enhancer variants when testing clinical associations.
doi:10.1038/ejhg.2010.120
PMCID: PMC2995013  PMID: 20700147
nicotinic receptor; α5 subunit; gene expression; nicotine dependence; lung cancer; enhancer
19.  CACNA1C gene polymorphisms, cardiovascular disease outcomes and treatment response 
Background
The gene encoding the target of calcium channel blockers, the α1c-subunit of the L-type calcium channel (CACNA1C) has not been well characterized and only small pharmacogenetic studies testing this gene have been published to date.
Methods and Results
Resequencing of CACNA1C was performed followed by a nested case-control study of the INternational VErapamil SR/trandolapril STudy (INVEST) GENEtic Substudy (INVEST-GENES). Of 46 polymorphisms identified, eight were assessed in the INVEST-GENES. Rs1051375 was found to have a significant interaction with treatment strategy (p=0.0001). Rs1051375 A/A genotype was associated with a 46% reduction in the primary outcome among those randomized to verapamil SR treatment compared to atenolol treatment (OR 0.54 95% CI 0.32-0.92). In heterozygous A/G individuals, there was no difference in the occurrence of the primary outcome when randomized to verapamil SR versus atenolol treatment (OR 1.47 95% CI 0.86-2.53), while homozygous G/G individuals had a greater than 4-fold increased risk of the primary outcome with verapamil treatment compared to those randomized to atenolol treatment (OR 4.59 95% CI 1.67-12.67). We did not identify allelic expression imbalance or differences in mRNA expression in heart tissue by rs1051375 genotype.
Conclusions
Variation in CACNA1C is associated with treatment response among hypertensive patients with stable coronary artery disease. Our data suggest a genetically-defined group of patients that benefit most from calcium channel blocker therapy, a group that benefits most from β-blocker therapy, and a third group in which calcium channel blocker and β-blocker therapy are equivalent.
doi:10.1161/CIRCGENETICS.109.857839
PMCID: PMC2761685  PMID: 20031608
genetics; pharmacology; ion channels; calcium; pharmacogenetics
20.  Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia 
Brain  2008;132(2):417-425.
Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case–control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.
doi:10.1093/brain/awn248
PMCID: PMC2640212  PMID: 18829695
dopamine; D2 receptor; working memory; prefrontal cortex; striatum
21.  Polymorphisms affecting gene transcription and mRNA processing in pharmacogenetic candidate genes: detection through allelic expression imbalance in human target tissues 
Pharmacogenetics and genomics  2008;18(9):781-791.
Genetic variation in mRNA expression plays a critical role in human phenotypic diversity, but it has proven difficult to detect regulatory polymorphisms - mostly single nucleotide polymorphisms (rSNPs). Additionally, variants in the transcribed region, termed here ‘structural RNA SNPs’ (srSNPs), can affect mRNA processing and turnover. Both rSNPs and srSNPs cause allelic mRNA expression imbalance (AEI) in heterozygous individuals. We have applied a rapid and accurate AEI methodology for testing 42 genes implicated in human diseases and drug response, specifically cardiovascular and CNS diseases, and affecting drug metabolism and transport. Each gene was analyzed in physiologically relevant human autopsy tissues, including brain, heart, liver, intestines, and lymphocytes. Substantial AEI was observed in ∼55% of the surveyed genes. Focusing on cardiovascular candidate genes in human hearts, AEI analysis revealed frequent cis-acting regulatory factors in SOD2 and ACE mRNA expression, having potential clinical significance. SNP scanning to locate regulatory polymorphisms in a number of genes failed to support several previously proposed promoter SNPs discovered with use of reporter gene assays in heterologous tissues, while srSNPs appear more frequent than expected. Computational analysis of mRNA folding indicates that ∼90% of srSNPs affects mRNA folding, and hence potentially function. Our results indicate that both rSNPs and srSNPs represent a still largely untapped reservoir of variants that contribute to human phenotypic diversity.
doi:10.1097/FPC.0b013e3283050107
PMCID: PMC2779843  PMID: 18698231
22.  KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the INternational VErapamil SR/Trandolapril STudy (INVEST) 
Pharmacogenetics and genomics  2007;17(9):719-729.
Objectives
We sought to determine whether polymorphisms in the large-conductance calcium and voltage-dependent potassium (BK) channel β1 subunit gene, KCNMB1, are associated with blood pressure response to verapamil SR or adverse outcomes in the GENEtic substudy of the INternational VErapamil SR/trandolapril STudy (INVEST-GENES).
Background
KCNMB1 is involved in calcium sensitivity and hypertension. The association between variability in KCNMB1 and calcium antagonist response, however, has not been assessed.
Methods
Genetic samples were collected from 5979 patients in INVEST. Blood pressure response to verapamil SR and time to achieve blood pressure control was assessed in relation to Glu65Lys and Val110Leu genotypes. The primary outcome (all cause mortality, nonfatal myocardial infarction or nonfatal stroke) was compared between genotype groups, and interaction with verapamil SR therapy was assessed.
Results
Systolic blood pressure response to verapamil SR did not differ by KCNMB1 genotype. Lys65 variant carriers, however, achieved blood pressure control earlier than Glu65Glu individuals [1.47 (interquartile ratio 2.77) versus 2.83 (interquartile ratio 4.17) months, P = 0.01] and were less likely to require multiple drugs at the time of blood pressure control (adjusted odds ratio 0.43, 95% confidence interval 0.19–0.95). Leu110 variant carriers had a reduced risk of primary outcome (hazard ratio 0.68, 95% confidence interval 0.47–0.998). Subgroup analysis revealed this finding to be more pronounced in verapamil SR-assigned patients (hazard ratio 0.587, 95% confidence interval 0.33–1.04) compared with atenolol-assigned patients (hazard ratio 0.946, 95% confidence interval 0.56–1.59). No difference was seen in the occurrence of the primary outcome compared by codon 65 genotype.
Conclusions
Our findings suggest that KCNMB1 genotype influences responsiveness to verapamil SR and risk of adverse cardiovascular outcomes.
doi:10.1097/FPC.0b013e32810f2e3c
PMCID: PMC2713584  PMID: 17700361
KCNMB1; polymorphism; verapamil SR
23.  Highly variable mRNA expression and splicing of L-type voltage-dependent calcium channel alpha subunit 1C in human heart tissues 
Pharmacogenetics and genomics  2006;16(10):735-745.
Objectives
The voltage-dependent L-type calcium channel α-subunit 1c (Cav1.2, CACNA1C) undergoes extensive mRNA splicing, leading to numerous isoforms with different functions. L-type calcium channel blockers are used in the treatment of hypertension and arrhythmias, but response varies between individuals. We have studied the interindividual variability in mRNA expression and splicing of CACNA1C, in 65 heart tissue samples, taken from heart transplant recipients.
Methods
Splice variants were measured quantitatively by polymerase chain reaction in 12 splicing loci of CACNA1C mRNA. To search for functional cis-acting polymorphisms, we determined allelic expression ratios for total CACNA1C mRNA and several splice variants using marker single nucleotide polymorphisms in exon 4 and exon 30.
Results
Total CACNA1C mRNA levels varied ∼50-fold. Substantial splicing occurred in six loci generating two or more splice variants, some with known functional differences. Splice patterns varied broadly between individuals. Two heart tissues expressed predominantly the dihydropyridine-sensitive smooth muscle isoform of CACNA1C (containing exon 8), rather than the cardiac isoform (containing exon 8a). Lack of significant allelic expression imbalance, observed with total mRNA and several splice variants, argued against CACNA1C polymorphisms as a cause of variability. Taken together, highly variable splicing can cause profound phenotypic variations of CACNA1C function, potentially associated with disease susceptibility and response to L-type calcium channel blockers.
doi:10.1097/01.fpc.0000230119.34205.8a
PMCID: PMC2688811  PMID: 17001293
cis-acting polymorphism; L-type calcium channel α-subunit 1c; mRNA splicing
24.  Genotyping panel for assessing response to cancer chemotherapy 
BMC Medical Genomics  2008;1:24.
Background
Variants in numerous genes are thought to affect the success or failure of cancer chemotherapy. Interindividual variability can result from genes involved in drug metabolism and transport, drug targets (receptors, enzymes, etc), and proteins relevant to cell survival (e.g., cell cycle, DNA repair, and apoptosis). The purpose of the current study is to establish a flexible, cost-effective, high-throughput genotyping platform for candidate genes involved in chemoresistance and -sensitivity, and treatment outcomes.
Methods
We have adopted SNPlex for genotyping 432 single nucleotide polymorphisms (SNPs) in 160 candidate genes implicated in response to anticancer chemotherapy.
Results
The genotyping panels were applied to 39 patients with chronic lymphocytic leukemia undergoing flavopiridol chemotherapy, and 90 patients with colorectal cancer. 408 SNPs (94%) produced successful genotyping results. Additional genotyping methods were established for polymorphisms undetectable by SNPlex, including multiplexed SNaPshot for CYP2D6 SNPs, and PCR amplification with fluorescently labeled primers for the UGT1A1 promoter (TA)nTAA repeat polymorphism.
Conclusion
This genotyping panel is useful for supporting clinical anticancer drug trials to identify polymorphisms that contribute to interindividual variability in drug response. Availability of population genetic data across multiple studies has the potential to yield genetic biomarkers for optimizing anticancer therapy.
doi:10.1186/1755-8794-1-24
PMCID: PMC2442111  PMID: 18547414
25.  Searching for polymorphisms that affect gene expression and mRNA processing: Example ABCB1 (MDR1) 
The AAPS Journal  2006;8(3):E515-E520.
Cis-acting genetic variations can affect the amount and structure of mRNA/protein. Genomic surveys indicate that polymorphisms affecting transcription and mRNA processing, including splicing and turnover, may account for main share of genetic factors in human phenotypic variability; however, most of these polymorphisms remain yet to be discovered. We use allelic expression imbalance (AEI) as a quantitative phenotype in the search for functionalcis-acting polymorphisms in many genes includingABCB1 (multidrug resistance 1 gene, MDR1, Pgp). Previous studies have shown that ABCB1 activity correlates with a synonymous polymorphism. C3435T; however, the functional polymorphism and molecular mechanisms underlying this clinical association remained unknown. Analysis of allele-specific expression in liver autopsy samples and in vitro expression experiments showed that C3435T represents a main functional polymorphism, accounting for 1.5-to 2-fold changes in mRNA levels. The mechanism appears to involve increased mRNA turnover, probably as a result of different folding structures calculated for mRNA with the Mfold program. Other examples of the successful application of AEI analysis for studying functional polymorphism include5-HTT (serotonin transporter, SLC6A4) andOPRM1 (μ opioid receptor). AEI is therefore a powerful approach for detectingcis-acting polymorphisms affecting gene expression and mRNA processing.
doi:10.1208/aapsj080361
PMCID: PMC2761059  PMID: 17025270
ABCB1; allele-specific expression; mRNA stability; cis-acting polymorphism

Results 1-25 (26)